Integrating Estimation of Inflation Threshold and Nowcasting Regional Economic Growth Using Classical, Machine Learning, and Ensemble Method

  • Taly Purwa BPS Provinsi Bali, Indonesia
  • Ni Made Inna Dariwardani Mahasiswa Program Studi Doktor Pariwisata, Fakultas Pariwisata, Universitas Udayana; BPS Provinsi Bali, Indonesia
  • Diyang Gita Cendekia BPS Provinsi Kalimantan Selatan, Indonesia
Keywords: Inflation Targeting Framework, Flash Estimate, Machine Learning, Non-Linear, Ensemble Method

Abstract

In line with the global economic recovery, Indonesia's post-pandemic economic recovery is experiencing major challenge caused by uncertainty due to increasing inflationary pressure. Efforts to reduce inflationary fluctuations were carried out by the government in order to maintain optimal economic growth under the inflation targeting policy framework. Hence it is necessary to inspect the inflation threshold for economic growth in determining the inflation target. This study attempts to integrate inflation threshold estimation and nowcasting modelling of regional economic growth as an early warning system for achieving the government's economic growth target by utilizing several classical, machine learning, and ensemble models. Threshold estimation for the National level and East Java is applied to provincial groups obtained from clustering time series with dynamic time wrapping (DTW), author's justification, and the west-east region. In addition, estimates were also carried out in the period before Covid-19 as well as the entire period and the addition of predictor variables to test the sensitivity of the inflation threshold estimate. The results show that there was a non-linear relationship between inflation and economic growth with an inverted U shape. There are differences in the inflation threshold range due to provincial groupings, addition of control variables, both for the National level and for East Java. Evaluation of the inflation level in East Java and eight cities shows that in several periods, East Java inflation has exceeded Bank Indonesia's ITF target. Taking into account the estimated threshold range, it is recommended to set a more flexible inflation target at the regional economic level. Finally, the results of nowcasting with several specifications, such as the use of machine learning models and weighted ensemble models based on accuracy, as well as out-sample predictions with one-step ahead can improve the accuracy and consistency of the model for both short-term and long-term.

References

Atmanegara, E., & Purwa, T. (2021). Hybrid Support Vector Machine and Logistic Regression for Multiclass Classification: A Case Study on Wine Dataset. Indonesian Journal of Data Science, 1(1), 1–7. https://www.researchgate.net/profile/Taly-Purwa/publication/353211298_Hybrid_Support_Vector_Machine_and_Logistic_Regression_for_Multiclass_Classification_A_Case_Study_on_Wine_Dataset/links/60ed4b980859317dbddb71c1/Hybrid-Support-Vector-Machine-and-Logisti

Aydin, C. (2017). The Inflation-Growth Nexus: A Dynamic Panel Threshold Analysis For D-8 Countries. Romanian Journal of Economic Forecastin, XX(4), 134–151.

Bank Indonesia (BI). (2021). PERKEMBANGAN EKONOMI KEUANGAN DAN KERJA SAMA INTERNASIONAL (PEKKI) EDISI 2021. Departemen Internasional Bank Indonesia. https://www.bi.go.id/id/publikasi/laporan/Documents/PEKKI-2021.pdf

Bappenas. (2019). Ringkasan Eksekutif: Kebijakan Pembangunan Berketahanan Iklim 2020-2045. Bappenas.

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/https://doi.org/10.1023/A:1010933404324

Bündnis Entwicklung Hilft, & Ruhr University Bochum. (2022). World Risk Report 2022, Focus: Digitalization (P. Mucke (ed.)). Bündnis Entwicklung Hilft. https://www.preventionweb.net/publication/worldriskreport-2022-focus-digitalization

Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 46, 131–159. https://doi.org/https://doi.org/10.1023/A:1012450327387

Chen, T., & He, T. (2023). xgboost : eXtreme Gradient Boosting. 1–4.

Chowdhury, A., & Ham, R. (2009). Inflation targeting in Indonesia: Searching for a threshold. Singapore Economic Review, 54(4), 645–655. https://doi.org/10.1142/S021759080900346X

Chowdhury, A., & Siregar, H. (2004). Indonesia’s Monetary Policy Dilemma – Constraints Of Inflation Targeting. The Journal of Developing Areas, 37(2), 137–153. https://doi.org/https://doi.org/10.1353/jda.2004.0023

Chu, J. F., Sek, S. K., & Ismail, M. T. (2019). Threshold effects of inflation on economic growth: Evidence from a static threshold analysis for 18 developed economies. AIP Conference Proceedings, 2184(December). https://doi.org/10.1063/1.5136389

DJPB Kemenkeu. (2023). Pertumbuhan Ekonomi Provinsi Maluku Utara Melesat Tajam Ditengah Terjaganya Inflasi Menimbulkan Optimisme Pasar Yang Meningkat. https://djpb.kemenkeu.go.id/kanwil/malut/id/data-publikasi/berita-terbaru/3115-diseminasi-monfis-malut-tw-1.html

Farahani, M. H., Najar, S., & Mohammadpour, R. (2021). The Effect of Inflation Threshold on Financial Development and Economic Growth : A Case Study of D-8 Countries. Iranian Economic Review, 25(3), 465–475. https://doi.org/10.22059/ier.2020.76090

Fischer, S. (1993). Inflation and Growth (Working Paper No. 1235).

Fong, Y. (2020). Using the R package chngpt. https://cran.r-project.org/web/packages/chngpt/vignettes/chngpt-vignette.pdf

Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. Annals of Statistics, 1189–1232.

Hansen, B. E. (1997). Inference in TAR Models. Studies in Nonlinear Dynamics and Econometrics, 2(1), 0–14.

Hansen, B. E. (2000). Sample Splitting and Threshold Estimation. Econometrica, 68(3), 575–603.

Harezlak, J., Ruppert, D., & Wand, M. P. (2018). Semiparametric Regression with R. Springer Nature. https://doi.org/doi.org/10.1007/978-1-4939-8853-2

Hsu, C.-W., Chang, C.-C., & Lin, C.-J. (2016). A Practical Guide to Support Vector Classification. http://www.csie.ntu.edu.tw/~cjlin

Hyndman, R.J., & Athanasopoulos, G. (2018). Forecasting: principles and practice (2nd editio). OTexts. OTexts.com/fpp2

Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd Editio). OTexts. OTexts.com/fpp3

International Monetary Fund (IMF). (2022). Regional Economic Outlook: Asia and the Pacific October 2022. International Monetary Fund (IMF). https://www.imf.org/en/Publications/REO/APAC/Issues/2022/10/13/regional-economic-outlook-for-asia-and-pacific-october-2022

Khan, M. S., & Senhadji, A. S. (2001). Threshold effects in the relationship between inflation and growth. IMF Staff Papers, 48(1), 1–21. https://doi.org/10.5089/9781451853339.001

Khun, M., & Johnson, K. (2018). Applied Predictive Modeling (Second Edition). Springer. https://doi.org/https://doi.org/10.1007/978-1-4614-6849-3

Kohns, D., & Bhattacharjee, A. (2022). Nowcasting growth using Google Trends data: A Bayesian Structural Time Series model. International Journal of Forecasting, 538. https://doi.org/10.1016/j.ijforecast.2022.05.002

Kusumatrisna, A. L., Sugema, I., & Pasaribu, S. H. (2019). Efek Threshold Inflasi Terhadap Pertumbuhan Ekonomi Regional Di Indonesia. Jurnal Ekonomi Pembangunan, 27(1), 43–52. https://doi.org/10.14203/jep.27.1.2019.43-52

Kusumatrisna, A. L., Sugema, I., & Pasaribu, S. H. (2022). Threshold Effect in the Relationship between Inflation Rate and Economic Growth in Indonesia. Buletin Ekonomi Moneter Dan Perbankan, 25(2), 117–132. https://doi.org/10.21098/bemp.v25i1.1045

Larasati, D. N., Widowati, N., & Projo, K. (2023). Nowcasting the Transportation and Accommodation Sectors Growth using the Google Trends Index. EKSAKTA Journal of Sciences and Data Analysis, 4(1), 29–39. https://doi.org/10.20885/EKSAKTA.vol

Leonard, K. P. J. R. (1990). Finding Groups in Data: An Introduction to Cluster Analysis (1st Editio). A Jhon Wiley & Sons, Inc.

Lewis, N. D. (2016). Deep Learning Made Easy with R.

Liu, A., Kim, Y. R., & Song, H. (2022). Toward an accurate assessment of tourism economic impact: A systematic literature review. Annals of Tourism Research Empirical Insights, 3(2), 100054. https://doi.org/10.1016/j.annale.2022.100054

Ma’arif, S. (2019). Nowcasting Pertumbuhan Produk Domestik Regional Bruto Indonesia Menggunakan Dynmanic Factor Model [Institut Teknologi Sepuluh Nopember (ITS)]. https://repository.its.ac.id/61246/1/06211750017005-Master_Thesis.pdf

Manurung, M. S., & Yuniasih, A. F. (2022). Estimation of Inflation Threshold of Indonesia and Its Effect on Economic Growth Periode 1981-2019. Proceedings of The International Conference on Data Science and Official Statistics, 1, 683–690. https://doi.org/10.34123/icdsos.v2021i1.230

Mardiana, R. K., & Ismail, M. (2016). Analisis Faktor – Faktor yang Mempengaruhi Perbedaan Inflasi Aktual dan Inflasi Target Fakultas Ekonomi dan Bisnis Universitas Brawijaya. Jurnal Ilmiah Mahasiswa FEB Universitas Brawijaya, 4(2), 1–15. https://jimfeb.ub.ac.id/index.php/jimfeb/article/view/2587

Murjani, A. (2019). Inflation and Growth in Indonesia: The Nexus and Threshold. Journal of Applied Economic Sciences, 14(163), 241–251. https://doi.org/https://doi.org/10.14505/jaes.v14.1(63).22

Namoun, A., Alshanqiti, E., Chamudi, M. A., & Rahmon. (2020). Web design scraping: enabling factors, opportunities and research directions. 2020 12th International Conference on Information Technology and Electrical Engineering (ICITEE), 104–109. https://doi.org/https://doi.org/10.1109/ ICITEE49829.2020.9271770

Neter, J. ., Wasserman, W. ., & Kutner, M. H. . (1989). Applied Linear Regression Models (2nd Editio). Richard D. Irwin, Inc.

Plapinger, T. (2017). What is a Decision Tree? Towards Data Science. https://towardsdatascience.com/what-is-a-decision-tree-22975f00f3e1

Purwa, T. (2019). Perbandingan Metode Regresi Logistik dan Random Forest untuk Klasifikasi Data Imbalanced (Studi Kasus: Klasifikasi Rumah Tangga Miskin di Kabupaten Karangasem, Bali Tahun 2017). Jurnal Matematika, Statistika Dan Komputasi, 16(1), 58. https://doi.org/10.20956/jmsk.v16i1.6494

Purwa, T., & Ngwarati, B. (2022). Assessing Forecasting Performance of Daily Mean Temperature at 1 st and 2 nd Perak Station Surabaya Using ARIMA and VARIMA Model with Outlier Detection. Jambura J. Math., 4(1), 104–118.

Ringo, J. N. B. S., & Monika, A. K. (2022). Nowcasting Regional Economic Growth in Indonesia. Buletin Ekonomi Moneter Dan Perbankan, 25(3), 291–322. https://doi.org/10.21098/bemp.v25i3.1815

Rob J. Hyndman, & Yeasmin Khandakar. (2008). Automatic Time Series Forecasting: The forecast Package for R. Journal of Statistical Software, 27(3), 22. http://www.jstatsoft.org/%0Ahttp://www.jstatsoft.org/v27/i03/paper

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

Sardá-Espinosa, A. (2019). Time-series clustering in R Using the dtwclust package. R Journal, 11(1), 1–45. https://doi.org/10.32614/rj-2019-023

Seabold, S., & Coppola, A. (2015). Nowcasting Prices Using Google Trends: An Application to Central America. Policy Research Working Paper, 7398. https://openknowledge.worldbank.org/handle/10986/22655

Siagian, T. H., Purhadi, P., Suhartono, S., & Ritonga, H. (2014). Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Nat. Hazards, 70(2), 1603–1617.

Sihombing. (2022). Kenaikan Harga BBM Jahat atau Sepakat? www.djkn.kemenkeu.go.id/kpknl-sidempuan/baca-artikel/15373/Kenaikan-Harga-BBM-Jahat-atau-Sepakat.html

Thanh, S. D. (2015). Threshold effects of inflation on growth in the ASEAN-5 countries: A Panel Smooth Transition Regression approach. Journal of Economics, Finance and Administrative Science, 20(38), 41–48. https://doi.org/10.1016/j.jefas.2015.01.003

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley and Sons.

Widaryoko, N. (2013). Inflasi dan Pertumbuhan Ekonomi: Pendugaan Ambang Batas Inflasi di Indonesia [Institut Pertanian Bogor]. https://repository.ipb.ac.id/handle/123456789/66584

Winarno, T. (2014). The Dynamics Relationship between Inflation and Economic Growth in Indonesia: a Regional Thresholds Approach. (BNM Economics Research Workshop). https://www.bnm.gov.my/documents/20124/811500/Paper3The_Dynamic_Relationship_between_Inflation_andEconomic_Growth_in_Indonesia.pdf

Winterfeldt, V., & Edwards, W. (1986). Decision trees. Decision Analysis and Behavioral Research, 63–89. ISBN 0-521-27304-8

Woloszko, N. (2020). Tracking Activity in Real Time With Google Trends (1634). https://www.oecd-ilibrary.org/economics/tracking-activity-in-real-time-with-google-trends_6b9c7518-en

Zulkarnain, R. (2022). Flash Estimates of Household Final Consumption Expenditure in East Java. East Java Economic Journal, 6(1), 60–85. https://doi.org/10.53572/ejavec.v6i1.84

Published
2023-09-29
How to Cite
Purwa, T., Dariwardani, N. M. I., & Cendekia, D. G. (2023). Integrating Estimation of Inflation Threshold and Nowcasting Regional Economic Growth Using Classical, Machine Learning, and Ensemble Method. East Java Economic Journal, 7(2), 269-300. https://doi.org/10.53572/ejavec.v7i2.116
Section
Articles