Sentiment Analysis Towards Leading Tourism in Banyuwangi As A Policy Consideration to Improve Economic Stability and Resilience

  • Darmanto Darmanto Departemen Statistika, Universitas Brawijaya, Malang, Indonesia
  • Diego Irsandy Departemen Statistika, Universitas Brawijaya, Malang, Indonesia
  • Zaki Abiyu Aqilah Departemen Statistika, Universitas Brawijaya, Malang, Indonesia
  • Rismania Hartanti Putri Yulianing Damayanti Departemen Statistika, Universitas Brawijaya, Malang, Indonesia
Keywords: Banyuwangi Tourism, Lexicon-based, Sentiment Analysis, Support Vector Machine

Abstract

The tourism sector is one of the important aspects in improving the economy of a region, including Banyuwangi. The Banyuwangi Regency Government took steps to make tourism a leading sector in supporting the economy. Efforts to increase economic stability and resilience can be made by optimizing tourism, which includes tourist destinations, restaurants and inns. Utilizing social media to analyze tourist reviews is a strategy in optimizing tourism. The purpose of this research is to analyze the sentiment of tourists in Banyuwangi. Sentiment analysis approach with Lexicon-based method analyzed with Support Vector Machine algorithm is done to find out the opinion of tourists about tourist sites in Banyuwangi. The analysis results show that the SVM algorithm can provide a fairly good performance with an accuracy of more than 70%. Based on sentiment analysis, improving the online reservation system and regular training for staff will reduce visitor dissatisfaction regarding waiting time and service quality. In addition, maintaining natural beauty and aesthetics through environmental conservation programs can increase Banyuwangi’s tourism attractiveness and support the hospitality, restaurant and transportation sectors. The government can implement policies that are more responsive to the needs and desires of tourists, thereby increasing visitor satisfaction and strengthening the competitiveness of the tourism sector.

References

Abuelenain, E. (2023). The Role of Tourism Innovation in Selecting Potential Tourist Destinations: The Case of UAE. International Journal of Heritage, Tourism and Hospitality, 17(1), 93–108. https://doi.org/10.21608/ijhth.2023.329408

Ali, T., Marc, B., Omar, B., Soulaimane, K., & Larbi, S. (2021). Exploring Destination’s Negative e-Reputation using Aspect Based Sentiment Analysis Approach: Case of Marrakech Destination on TripAdvisor. Tourism Management Perspectives, 40, 100892. https://doi.org/10.1016/j.tmp.2021.100892

Al-Qablan, T. A., Mohd Noor, M. H., Al-Betar, M. A., & Khader, A. T. (2023). A Survey on Sentiment Analysis and its Applications. Neural Computing and Applications, 35(29), 21567–21601. https://doi.org/10.1007/s00521-023-08941-y

Alrashidi, S. M., Alanazi, F. N., Albalawi, H. A., Albalawi, O. M., & Awadelkarim, A. M. (2022). Machine Learning-Based Sentiment Analysis for Tweets Saudi Tourism. Journal of Theoretical and Applied Information Technology, 100(16), 5096-5109.

Armutcu, B., Tan, A., Amponsah, M., Parida, S., & Ramkissoon, H. (2023). Tourist behaviour: The Role of Digital Marketing and Social Media. Acta Psychologica, 240, 104025. https://doi.org/10.1016/j.actpsy.2023.104025

Asmara, S. (2020). Tinjauan Kritis Kendala dan Dampak Pengembangan Pariwisata Indonesia. Prosiding WEBINAR Fakultas Ekonomi Unimed “Strategi Dunia Usaha Menyikapi Status Indonesia Sebagai Negara Maju: Pra Dan Pasca Covid-19,” 140–151.

Bhatt, C., Gaitri, Kumar, D., Chauhan, R., Vishvakarma, A., & Singh, T. (2023). Web Scraping: Huge Data Collection from Web. 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), 375–378. https://doi.org/10.1109/ICSEIET58677.2023.10303037

Bhuiyan, Md. A. H., & Darda, Md. A. (2019). Tourists’ Satisfaction on Heritage Sites of Dhaka City in Bangladesh. International Journal of Culture, Tourism and Hospitality Research, 14(1), 34–43. https://doi.org/10.1108/IJCTHR-06-2018-0081

Borrajo-Millán, F., Alonso-Almeida, M.-M., Escat-Cortes, M., & Yi, L. (2021). Sentiment Analysis to Measure Quality and Build Sustainability in Tourism Destinations. Sustainability, 13(11), 6015. https://doi.org/10.3390/su13116015

Buditiawan, K. (2021). Strategi Pemasaran Pariwisata Pantai Plengkung Kabupaten Banyuwangi Menggunakan 3P+4A (Price, Place, Promotion, Attraction, Accessibility, Amenity, Ancillary). Jurnal Kebijakan Pembangunan, 16(2), 207–220. https://doi.org/10.47441/jkp.v16i2.201

Cardias, E. R. (2021). Pengaruh Kepuasan Wisatawan terhadap Willingness to Pay Taman Wisata Alam Kawah Ijen. Jurnal Pariwisata Terapan, 5(1), 13. https://doi.org/10.22146/jpt.66157

Chang, V., Liu, L., Xu, Q., Li, T., & Hsu, C. (2023). An Improved Model for Sentiment Analysis on Luxury Hotel Review. Expert Systems, 40(2), e12580. https://doi.org/10.1111/exsy.12580

Cindo, M., & Rini, D. P. (2019). Literatur Review: Metode Klasifikasi Pada Sentimen Analisis. Seminar Nasional Teknologi Komputer & Sains (SAINTEKS), 66–70.

Deng, N., & Liu, J. (2021). Where did you take those photos? Tourists’ Preference Clustering Based on Facial and Background Recognition. Journal of Destination Marketing & Management, 21, 100632. https://doi.org/10.1016/j.jdmm.2021.100632

Dewi, K. (2021). Analisis Demografi dan Kewilayahan Banyuwangi dengan Pendekatan HINCO untuk Pegembangan Wilayah. 1(1).

Fahimi, A., Akadiri, S. S., Seraj, M., & Akadiri, A. C. (2018). Testing the Role of Tourism and Human Capital Development in Economic Growth. A panel causality study of micro states. Tourism Management Perspectives, 28, 62–70. https://doi.org/10.1016/j.tmp.2018.08.004

Firlia, K. Y., Faisal, M. R., Kartini, D., Nugroho, R. A., & Abadi, F. (2021). Analysis of New Features on the Performance of the Support Vector Machine Algorithm in Classification of Natural Disaster Messages. 2021 4th International Conference of Computer and Informatics Engineering (IC2IE), 317–322.

Foris, D., Florescu, A., Foris, T., & Barabas, S. (2020). Improving the Management of Tourist Destinations: A New Approach to Strategic Management at the DMO Level by Integrating Lean Techniques. Sustainability, 12(23), 10201. https://doi.org/10.3390/su122310201

Ganguly, K. K. (2024). Can Twitter Data with Positive or Negative Content Affect Individual Emotions Related to Travel & Tourism Decisions? A study Pertaining to the COVID-19 Pandemic. Current Issues in Tourism, 1–15. https://doi.org/10.1080/13683500.2023.2300044

Grandini, M., Bagli, E., & Visani, G. (2020). Metrics for Multi-Class Classification: An Overview (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2008.05756

Han, K.-X., Chien, W., Chiu, C.-C., & Cheng, Y.-T. (2020). Application of Support Vector Machine (SVM) in the Sentiment Analysis of Twitter DataSet. Applied Sciences, 10(3), 1125. https://doi.org/10.3390/app10031125

Hasanah, R., & Yustanti, W. (2021). Analisis Sentimen dan Pemeringkatan Popularitas Tempat Wisata dengan Naïve Bayes dan AHP. Journal of Emerging Information System and Business Intelligence (JEISBI), 2(1), 21-27.

Hasnain, M., Pasha, M. F., Ghani, I., Imran, M., Alzahrani, M. Y., & Budiarto, R. (2020). Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking. IEEE Access, 8, 90847–90861. https://doi.org/10.1109/ACCESS.2020.2994222

Jiang, Q., Chan, C.-S., Eichelberger, S., Ma, H., & Pikkemaat, B. (2021). Sentiment Analysis of Online Destination Image of Hong Kong Held by Mainland Chinese Tourists. Current Issues in Tourism, 24(17), 2501–2522. https://doi.org/10.1080/13683500.2021.1874312

Joseph, V. R. (2022). Optimal Ratio for Data Splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 531–538. https://doi.org/10.1002/sam.11583

Kim, M., & Kim, J. (2020). The Influence of Authenticity of Online Reviews on Trust Formation among Travelers. Journal of Travel Research, 59(5), 763–776. https://doi.org/10.1177/0047287519868307

Kusmira, M. (2019). Analisis Sentimen Registrasi Ulang Kartu SIM pada Twitter Menggunakan Algoritma SVM dan k-NN. 14(1), 105–110.

Kusuma, B. M. A. (2014). Pembangunan Terintegrasi dalam Mewujudkan Kota Pariwisata Bertaraf Internasional: Studi Kasus di Kabupaten Banyuwangi Jawa Timur. JKMP (Jurnal Kebijakan Dan Manajemen Publik), 2(2), 117–130. https://doi.org/10.21070/jkmp.v2i2.433

Lee, J., Benjamin, S., & Childs, M. (2022). Unpacking the Emotions behind TripAdvisor Travel Reviews: The Case Study of Gatlinburg, Tennessee. International Journal of Hospitality & Tourism Administration, 23(2), 347–364. https://doi.org/10.1080/15256480.2020.1746219

Lestari, A. A. A., & Suharyanti, N. P. N. (2020). Kebijakan Pemerintah Indonesia dalam Pengembangan Pariwisata. Jurnal Hukum Saraswati (JHS), 2(2). https://doi.org/10.36733/jhshs.v2i2.1376

Liang, F., Pan, Y., Gu, M., Guan, W., & Tsai, F. (2021). Cultural Tourism Resource Perceptions: Analyses Based on Tourists’ Online Travel Notes. Sustainability, 13(2), 519. https://doi.org/10.3390/su13020519

Lukoseviciute, G., & Panagopoulos, T. (2021). Management Priorities from Tourists’ Perspectives and Beach Quality Assessment as Tools to Support Sustainable Coastal Tourism. Ocean & Coastal Management, 208, 105646. https://doi.org/10.1016/j.ocecoaman.2021.105646

Manosso, F. C., & Ruiz, T. C. D. (2021). Using Sentiment Analysis in Tourism Research: A Systematic, Bibliometric, and Integrative Review. Journal of Tourism, Heritage & Services Marketing, 7(2), 16–27. https://doi.org/10.5281/ZENODO.5548426

Matulessy, C., & Purnama, A. (2023). Analisis Sentimen Terhadap Review Pengguna Indrive di Google Playstore Menggunakan Algoritma Support Vector Machine. Jurnal Darma Agung, 31(1), 1015. https://doi.org/10.46930/ojsuda.v31i1.3078

Mehra, P. (2023). Unexpected Surprise: Emotion Analysis and Aspect Based Sentiment Analysis (ABSA) of User Generated Comments to Study Behavioral Intentions of Tourists. Tourism Management Perspectives, 45, 101063. https://doi.org/10.1016/j.tmp.2022.101063

Mukaffi, Z. & Haryanto, T. (2022). Dampak Sektor Pariwisata Terhadap Pertumbuhan Ekonomi di Kabupaten Banyuwangi. TOBA: Journal of Tourism, Hospitality and Destination, 1(2), 38–43. https://doi.org/10.55123/toba.v1i2.356

Munsaen, S., Chuchuen, C., & Sukphan, J. (2023). Sentiment Analysis on Social Networking: A Case Study of Chiang Mai Tourism. In the 7th TICC International Conference (pp. 190-202).

Nugroho, S. B. M. (2020). Beberapa Masalah dalam Pengembangan Sektor Pariwisata di Indonesia. Jurnal Pariwisata, 7(2), 124–131.

Prasetya, K. (2020). Pengaruh Brand “Wonderful Indonesia” dalam Pembangunan Industri Pariwisata Indonesia [Preprint]. Open Science Framework. https://doi.org/10.31219/osf.io/82arw

Qi, Y., & Shabrina, Z. (2023). Sentiment analysis using Twitter Data: A Comparative Application of Lexicon- and Machine-Learning-Based Approach. Social Network Analysis and Mining, 13(1), 31. https://doi.org/10.1007/s13278-023-01030-x

Rajalakshmi, R., & Aravindan, C. (2018). A Naive Bayes Approach for URL Classification with Supervised Feature Selection and Rejection Framework. Computational Intelligence, 34(1), 363–396. https://doi.org/10.1111/coin.12158

Rini, I. S., Usman, F., & Subagiyo, A. (2020). Rute Potensial Destinasi Wisata Kabupaten Banyuwangi. Planning for Urban Region and Environment, 9(2).

Rintyarna, B. S. (2022). Post Pandemic Public Acceptance Map Toward Ijen Geopark Using Aspect Based Sentiment Analysis Technique. International Applied Science, 1(2), 67-73.

Salsabila, E., & Wulandari, G. A. (2024). Peluang dan Tantangan Ekowisata Guna Mendorong Pertumbuha Bisnis dan Ekonomi di Banyuwangi. BISMA: Jurnal Bisnis dan Manajemen, 18(1), 49. https://doi.org/10.19184/bisma.v18i1.47447

Samsi, S., Maesti, D. P., & Parantika, A. (2022). Optimalisasi Pemanfaatan Media Sosial sebagai Strategi Promosi terhadap Pengembangan Wisata Taman Nasional Meru Betiri, Kabupaten Jember, dan Banyuwangi. JURNAL NAWASENA, 1(3), 84–91.

Sheykhmousa, M., Mahdianpari, M., Ghanbari, H., Mohammadimanesh, F., Ghamisi, P., & Homayouni, S. (2020). Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6308–6325. https://doi.org/10.1109/JSTARS.2020.3026724

Taherdoost, H. (2022). Machine learning Algorithms: Features and Applications. In J. Wang (Ed.), Encyclopedia of Data Science and Machine learning (pp. 938–960). IGI Global. https://doi.org/10.4018/978-1-7998-9220-5.ch054

Taye, M. M. (2023). Understanding of Machine learning with Deep Learning: Architectures, Workflow, Applications and Future Directions. Computers, 12(5), 91. https://doi.org/10.3390/computers12050091

Tharwat, A. (2021). Classification Assessment Methods. Applied Computing and Informatics, 17(1), 168–192. https://doi.org/10.1016/j.aci.2018.08.003

Timothy, D., & Teye, V. (2009). Tourism and the Lodging Sector (1st ed.). Routledge. https://doi.org/10.4324/9780080942810

Wajdi, M., Christiani, R., Novitriana, K., Putri, P. A. S., & Dhyana, K. A. (2023). Hidden Beauty of Honeymoon Beach: A Potential Attraction for Tourists (A Review of a Tourism Object). Journal of Commerce Management and Tourism Studies, 2(1).

Walakula, Y. B. (2020). Analisis Eksistensi Pariwisata Indonesia di Tengah Situasi Pandemi Corona Virus Disease (Covid19). Noumena Ilmu Sos. Keagamaan, 1(1), 47–52.

Walasary, T. (2022). Survey Paper Tentang Analisis Sentimen. KONSTELASI: Konvergensi Teknologi Dan Sistem Informasi, 2(1). https://doi.org/10.24002/konstelasi.v2i1.5378

Wulandari, F. F., & Indrawati, I. (2021). Upaya Pemerintah Indonesia dalam Mewujudkan Destinasi Pariwisata Intrernasional di Kabbupaten Banyuwangi Tahun 2013-2019. Global Insight Journal, 6(1). https://doi.org/10.52447/gij.v6i1.4439

Yacouby, R., & Axman, D. (2020). Probabilistic Extension of Precision, Recall, and F1 Score for more Thorough Evaluation of Classification Models. Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems, 79–91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9

Published
2025-03-19
How to Cite
Darmanto, D., Irsandy, D., Abiyu Aqilah, Z., & Hartanti Putri Yulianing Damayanti, R. (2025). Sentiment Analysis Towards Leading Tourism in Banyuwangi As A Policy Consideration to Improve Economic Stability and Resilience. East Java Economic Journal, 9(1), 114-133. https://doi.org/10.53572/ejavec.v9i1.152
Section
Articles