

EAST JAVA ECONOMIC JOURNAL

https://ejavec.id

ANALYSIS AND STRATEGY OF STRENGTHENING GREEN ECONOMY THROUGH THE VALUE CHAIN CONCEPT TO SUPPORT DOWNSTREAMING OF COFFEE FARMING IN EAST JAVA

Ivo Rajava Fiba¹*

Raissa Aulia Salsabila²

- ¹ Program Studi Akuntansi, Universitas Jember, Jember, Indonesia
- ² Program Studi Manajemen, Universitas Jember, Jember, Indonesia

ABSTRACT

This study aims to analyze the coffee value chain and formulate strategies to strengthen downstream coffee farming in East Java Province within a green economy framework. Primary data were collected through surveys and interviews conducted in 2024 with three key actors: farmers, historians, and government officials. The analysis was conducted using the Hayami method to measure product added value, Rapfish to assess value chain variability, and AHP to determine priority strengthening strategies. The results indicate that the greatest added value is obtained when farmers process coffee from cherries to ground coffee. A unique analysis indicates that ecological and market dimensions still require further development. The resulting strategic priorities are training and certification of Good Agricultural Practices (GAP), facilitating market access through e-commerce and direct trade, and local government policies that encourage the use of local coffee. These findings emphasize the importance of downstream coffee processing as a means to enhance farmer welfare while promoting the transition to a green economy in East Java.

Keywords: Green economy, Downstream, Coffee Farming, Value chain

ABSTRAK

Penelitian ini bertujuan untuk menganalisis keberlanjutan value chain kopi serta merumuskan strategi penguatan hilirisasi pertanian kopi di Provinsi Jawa Timur dalam kerangka ekonomi hijau. Data primer diperoleh melalui survei dan wawancara pada tahun 2024 dengan tiga aktor yaitu petani, akademisi, dan pemerintah. Analisis dilakukan menggunakan metode Hayami untuk mengukur value added produk, Rapfish untuk menilai keberlanjutan value chain, serta AHP untuk menentukan prioritas strategi penguatan. Hasil penelitian menunjukkan bahwa value added terbesar diperoleh ketika petani mengolah kopi dari ceri merah menjadi kopi bubuk. Analisis keberlanjutan mengindikasikan dimensi ekologi dan pasar masih memerlukan penguatan. Strategi prioritas yang dihasilkan adalah pelatihan dan sertifikasi Good Agricultural Practices (GAP), fasilitasi akses pasar melalui e-commerce dan perdagangan langsung, serta kebijakan pemerintah daerah yang mendorong penggunaan kopi lokal. Temuan ini menegaskan pentingnya hilirisasi kopi sebagai upaya peningkatan kesejahteraan petani sekaligus mendukung transisi menuju ekonomi hijau di Jawa Timur.

Kata Kunci: Ekonomi Hijau, Hilirisasi, Pertanian Kopi, Value Added, Value chain

JEL: : Q11; Q56

RIWAYAT ARTIKEL

Tanggal Masuk: 15 Januari 2025 Tanggal Revisi: 25 Agustus 2025 Tanggal Diterima: 07 September 2025 Tersedia Online: 30 September 2025

*Korespondensi: Ivo Rajava Fiba E-mail: ivorajavafiba@gmail.com

East Java Economic Journal, p-ISSN: 2597-8780, e-ISSN: 2830-2001, DOI: 10.53572/ejavec.v9i2.169, Open access under a Creative Commons Attribution- 4.0 International Public License (CC - BY 4.0)

Pendahuluan

Hilirisasi kopi merupakan strategi penting dalam meningkatkan value added produk melalui pengolahan, pengemasan, dan pemasaran sebelum mencapai konsumen akhir. Konsep ini sejalan dengan teori value chain, yang menekankan optimalisasi kontribusi setiap tahap dari produksi hingga distribusi demi menghasilkan nilai akhir produk yang lebih tinggi (Porter, 1985). Implementasi value chain yang efektif diyakini mampu memperkuat daya saing kopi lokal, baik di pasar domestik maupun global.

Kopi memiliki peran penting dalam perekonomian Jawa Timur, dengan produksi mencapai sekitar 48,1 ribu ton pada tahun 2023 menempatkannya sebagai provinsi penghasil kopi terbesar keenam di Indonesia (BPS Jawa Timur, 2022). Di tingkat nasional, Indonesia menempati posisi keempat dalam produksi kopi dunia dengan output sekitar 10,9 juta karung 60 kg pada musim 2024 (Andri, 2023). Selain itu, pertumbuhan pasar specialty coffee Indonesia juga mulai meningkat tajam, contohnya transaksi specialty coffee mencapai USD 20,6 juta pada Specialty Coffee Expo 2023 (Kemendag RI, 2023).

Meski memiliki potensi besar, sektor kopi Jawa Timur masih menghadapi berbagai hambatan serius. Posisi tawar petani rendah akibat dominasi pengepul, keterbatasan akses teknologi modern, kurangnya pelatihan, dan kendala pembiayaan menjadi permasalahan utama. Ekspor kopi masih didominasi bentuk biji hijau mentah (green bean), sehingga value added justru dinikmati oleh pihak industri pengolahan di luar negeri (Anisa, 2023).

Untuk mengatasi masalah ini, hilirisasi berbasis penguatan value chain menjadi solusi strategis. Dengan pengolahan produk hingga tingkat olahan (misalnya kopi bubuk), petani dapat memperoleh value added yang lebih besar. Strategi tersebut penting, namun literatur spesifik yang membahas hilirisasi kopi di Jawa Timur masih terbatas, kebanyakan masih bersifat deskriptif dan belum terarah.

Dengan demikian, penelitian ini bertujuan untuk menganalisis keberlanjutan dan merumuskan strategi penguatan value chain dalam mendukung hilirisasi pertanian kopi di Jawa Timur. Tujuan ini diharapkan mampu memberikan rekomendasi konkret bagi peningkatan kesejahteraan petani dan mendukung transisi menuju green economy melalui hilirisasi produk kopi.

Telaah Literatur

Green economy

Green economy diartikan sebagai kegiatan ekonomi yang mencerminkan aspek-aspek seperti rendah karbon, hemat sumber daya dan inklusif secara sosial (Anwar, M., 2022). Secara garis besar untuk saat ini, sistem harga merupakan penyebab utama efek negatif dalam lingkungan dalam implementasi sumber daya alam dalam aktivitas ekonomi (Gunawan & Rahmawati, 2024). Penerapan green economy diyakini mampu mendorong pertumbuhan ekonomi yang sejalan dengan perlindungan lingkungan. Melalui green economy pertumbuhan lapangan kerja di dukung oleh investasi dan kebijakan publik seperti hilirisasi dalam mendukung kegiatan ekonomi dalam aspek pengurangan emisi karbon dan efisiensi sumber daya, dan pencegahan pada hilangnya keanekaragaman hayati dan ekosistem (Toubes & Araújo-Vila, 2022).

Green economy juga memiliki kaitan yang cukup erat dalam aspek pembangunan berkelanjutan SDGs 2030 yang menitikberatkan pada aspek-aspek yang mendukung pada pencapaian aspek-aspek seperti ekonomi, sosial, dan lingkungan. Dengan demikian, indikator green economy yang digunakan dalam penelitian meliputi efisiensi sumber daya, rendah karbon, dan inklusivitas sosial relevan dan berhubungan langsung dengan strategi hilirisasi kopi di Jawa Timur. Indikator ini memiliki keterkaitan erat dengan variabel lain: hilirisasi meningkatkan nilai tambah (ekonomi), praktik ramah lingkungan (ekologi), serta akses pasar inklusif (sosial) yang dapat mendukung transisi green economy yang berkelanjutan.

Value chain

Konsep value chain menjelaskan rangkaian aktivitas bisnis yang saling terkait untuk menciptakan value added bagi setiap pelaku dalam rantai pasok. Menurut Aoki & Akai (2023), value chain merupakan proses transformasi dari input menjadi output yang menghasilkan nilai baru sebelum diterima pelanggan. Dalam konteks agroindustri, efektivitas manajemen value chain sangat menentukan efisiensi biaya, kualitas produk, serta daya saing komoditas. Studi terbaru menegaskan bahwa pengelolaan value chain yang baik tidak hanya berfokus pada efisiensi biaya, tetapi juga pada distribusi manfaat yang adil antar pelaku (Syamil dkk., 2023). Hal ini relevan dengan indikator value added yang digunakan dalam penelitian, karena mencerminkan sejauh mana setiap pelaku (petani, pengolah, distributor) memperoleh manfaat ekonomi secara proporsional.

Hubungan antar variabel dapat dijelaskan melalui keterkaitan antara aktivitas utama (produksi, pengolahan, distribusi) dan aktivitas pendukung (akses pasar, kelembagaan, teknologi). Ketidakseimbangan dalam salah satu aktivitas akan memengaruhi distribusi nilai pada keseluruhan rantai (Porter, 1985; Nugraha dkk., 2022). Misalnya, peningkatan kualitas pengolahan akan meningkatkan value added pada tingkat hilir, namun jika akses pasar terbatas, keuntungan tersebut tidak optimal dirasakan petani di hulu. Dengan demikian, indikator value added dalam penelitian ini tidak hanya berfungsi sebagai ukuran ekonomi, tetapi juga sebagai dasar analisis keberlanjutan dan keadilan distribusi manfaat dalam agroindustri kopi. Dukungan dari penelitian sebelumnya (Sriwana dkk., 2022; Yusuf dkk., 2022) menunjukkan bahwa tanpa penguatan kelembagaan dan efisiensi manajemen rantai nilai, petani cenderung berada pada posisi yang kurang menguntungkan meskipun nilai tambah di tingkat hilir meningkat.

Hilirisasi Agroindustri

Kegiatan hilirisasi agroindustri merupakan kegiatan mengubah bahan mentah menjadi produk olahan jadi atau setengah jadi. Hilirisasi juga merupakan sebuah proses pengembangan industri dalam meningkatkan aspek *value added* produk pertanian, yang tidak hanya berperan dalam peningkatan ekonomi dan sosial masyarakat melalui aspek pengolahan dan pemasaran produk, tetapi juga sebagai langkah keberlanjutan mendukung kemandirian petani dalam pengurangan ketergantungan petani kepada perusahaan besar atau pemilik modal (Sasongko dkk., 2023). Pentingnya hilirisasi pertanian sebagai langkah peningkatan kesejahteraan petani dan Masyarakat dalam mencapai daya saing produk yang dihasilkan (Syaukat, 2024). Pengembangan hilirisasi agroindustri sektor pertanian juga menjadi penghasil utama produk pangan yang mendukung kebutuhan masyarakat dengan mutu terjamin, harga kompetitif, dan meningkatkan *value added* (Suhardjo dkk., 2024). Konsep hilirisasi juga mampu memberikan pengaruh positif terhadap pengungkapan keberlanjutan *value added* bahan baku, penguatan struktur agroindustri, dan pembukaan lapangan kerja (Deddy dkk., 2023).

Hubungan antar variabel ditunjukkan melalui keterkaitan antara proses pengolahan keberlanjutan (variabel ekologi), peningkatan pendapatan (variabel ekonomi), dan kemandirian petani (variabel sosial). Studi Nugraha dkk., (2022) memperkuat temuan ini dengan menyatakan bahwa tanpa penguatan aspek kelembagaan dan akses pasar, peningkatan

Fiba, I. R., &

value added melalui hilirisasi hanya akan dirasakan sebagian aktor di rantai pasok. Dengan demikian, literatur mendukung bahwa hilirisasi bukan sekadar proses teknis pengolahan, tetapi juga strategi pembangunan berkelanjutan yang menyeimbangkan dimensi ekonomi, sosial, dan ekologi dalam agroindustri kopi.

Penelitian Terdahulu

Penelitian Sriwana dkk. (2022) menganalisis dari value added dalam meningkatkan keberlanjutan rantai pasok agroindustri kopi menggunakan metode Hayami terdiri dari tahapan penentuan input, proses, dan output, yang kemudian dilakukan penghitungan pendapatan dan keuntungan. Hasil penelitian menunjukkan bahwa petani kopi mendapatkan rasio value added 57,77%, kelompok tani 67,13%, dan pengumpul sebesar 81,04% (Sriwana dkk., 2022). Hal ini menunjukkan petani sebagai pelaku kunci di hulu rantai pasok berada di posisi yang kurang menguntungkan. Sebagai solusi dalam penelitian ini yaitu perancangan kelembagaan dengan menghapus sistem ijon, memfasilitasi petani dengan perbankan dan pasar, serta memberikan kesempatan petani untuk turut serta dalam penentuan harga.

Analisis value added agroindustri kopi menggunakan metode Hayami juga didukung melalui penelitian yang telah dilakukan oleh Idsan dan Andanu (2025) yang menghitung biaya produksi, penerimaan, pendapatan, dan value added dari setiap produk. Hasil menunjukkan bahwa kelima produk memiliki rasio value added diatas 40% dengan rincian kopi bubuk premium (88,70%), roasted bean (85,45%), kopi bubuk asalan (80,44%), green bean premium (69,48%), dan green bean asalan (47,21%) (Idsan & Andanu, 2025). Tingginya rasio ini mengindikasikan bahwa usaha pengolahan kopi robusta yang telah dijalankan sangat layak secara ekonomi dan mampu memberikan keuntungan finansial yang signifikan.

Agroindustri Kopi yang berkelanjutan merupakan salah satu capaian yang mampu mendukung dari implementasi value added dalam pengelolaan agroindustri kopi. Penelitian terdahulu yang dilakukan oleh Yusuf dkk. (2022) mengenai strategi keberlanjutan dan model bisnis kopi Arabika di Kabupaten Garut, menggunakan analisis Rapfish Multidimensional Scaling (MDS) dengan menggunakan lima dimensi yaitu lingkungan, ekonomi, sosial, pemasaran, dan kebijakan. Hasil penelitian dari analisis keberlanjutan usaha kopi arabika di Kabupaten Garut berada pada kategori "cukup berkelanjutan dengan nilai indeks MDS rata-rata 55,65. Dimensi sosial menunjukkan nilai indeks keberlanjutan tertinggi (62,45) dan dimensi lingkungan (59,01), ekonomi (53,00), kebijakan (51,92), dan pemasaran (51,87) (Yusuf dkk., 2022).

Analisis leverage pada penelitian Yusuf dkk. (2022) mengidentifikasi atribut-atribut yang paling sensitif mempengaruhi keberlanjutan pada setiap dimensi, yaitu adaptasi dan mitigasi perubahan iklim (lingkungan), pendapatan usaha tani (ekonomi), jumlah petani yang mendapat penyuluhan/pendampingan (sosial), keuntungan yang didapat pelanggan (pemasaran), dan kelembagaan petani (kebijakan). Berdasarkan temuan tersebut, penelitian ini merekomendasikan model bisnis yang berfokus pada peningkatan kapasitas pelaku usaha dan pembentukan kelembagaan formal seperti koperasi untuk menjadi solusi atas masalah produktivitas, permodalan, dan standardisasi (Yusuf dkk., 2022).

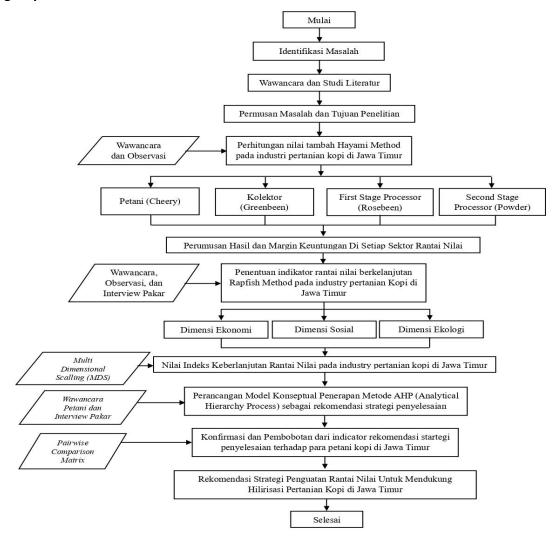
Analisis keberlanjutan agroindustri kopi juga didasarkan pada penelitian yang telah dilakukan oleh Fajar dkk. (2023) mengenai status keberlanjutan perkebunan kopi bersertifikasi C.A.F.E. Practices, metode penelitian yang digunakan adalah analisis ordinasi Rap-Coffee melalui pendekatan Rapfish Multidimensional Scaling (MDS). Penelitian bertujuan mengukur status keberlanjutan pada lima dimensi, yaitu ekonomi, sosial, ekologi, kelembagaan, dan teknologi. Hasil analisis multidimensi menunjukkan bahwa status keberlanjutan perkebunan kopi telah berada pada kategori "cukup berkelanjutan" dengan nilai dimensi ekologi (71,27),

kelembagaan (68,39), teknologi (64,92), sosial (62,36), dan ekonomi (55,03). Analisis *leverage* menemukan tiga atribut paling sensitif setiap dimensi, di antaranya harga kopi dan biaya sertifikasi (ekonomi), jaminan kesehatan dan keselamatan kerja (sosial), penggunaan bahan kimia (ekologi), pelatihan keselamatan kerja (kelembagaan), dan jarak tanam (teknologi).

Salah satu metode efektif dalam perumusan strategi berkelanjutan yang mendukung penyelesaian masalah dalam agroindustri kopi yaitu menggunakan *Analytical Hierarchy Process* (AHP). Penelitian yang dilakukan oleh Sidiq dkk. (2024) menggunakan metode dari *Analytical Hierarchy Process* (AHP). Hasil penelitian menunjukkan bahwa terdapat beberapa sub-elemen kunci antara lain: mengoptimalkan kawasan agropolitan, keterbatasan modal, rendahnya kualitas SDM, sinergi antara Perhutani, petani kopi, dan pusat penelitian kopi, penataan dan pembinaan kelembagaan kelompok tani sebagai aktivitas kunci, serta kebutuhan akan SDM yang terampil. Berdasarkan analisis *Analytical Hierarchy Process* (AHP), didapatkan tiga alternatif strategi pengembangan dengan urutan prioritas tertinggi adalah integrasi industri hulu dan hilir (bobot 0,608), diikuti oleh kemitraan dengan lembaga penelitian (bobot 0,246), dan kemitraan dengan lembaga keuangan (bobot 0,146) (Sidiq dkk. 2024).

Penelitian lain menurut Lada dkk. (2021) metode yang digunakan untuk merumuskan strategi pengembangan pemasaran agroindustri kopi robusta pada Gapoktan Hutbun Berdasarkan penelitian yang dilakukan oleh Tri Hadi Sumitra Lada dkk., metode yang digunakan untuk merumuskan strategi pengembangan pemasaran agroindustri kopi robusta pada Gapoktan Hutbun dengan penentuan prioritas alternatif strategi menggunakan *Analytical Hierarchy Process* (AHP). Hasil analisis data menunjukkan analisis AHP, dari lima alternatif strategi yang diusulkan, prioritas utama yang direkomendasikan adalah penyediaan promosi dengan bobot tertinggi sebesar 0,368. Alternatif strategi lainnya perluasan pasar (bobot 0,253), penyediaan teknologi pengolahan (bobot 0,111), penyediaan jaringan pasar (bobot 0,066), dan penyediaan *e-commerce* (bobot 0,046) (Lada dkk. 2021).

Metode Penelitian


Kondisi rantai pasok kopi di Provinsi Jawa Timur dapat digambarkan melalui data sekunder dan observasi lapangan. Tiga kabupaten utama penghasil kopi, yaitu Banyuwangi, Jember, dan Bondowoso, dikenal sebagai sentra kopi nasional dengan dominasi komoditas Robusta dan Arabika (BPS, 2021). Dari sisi produksi, sebagian besar petani masih menjual kopi dalam bentuk ceri merah kepada pengepul atau kolektor. Harga jual di tingkat petani relatif bervariasi, berada pada kisaran Rp14.000–17.000 per kg. Hal ini menunjukkan bahwa nilai tambah di tingkat petani masih terbatas karena keterbatasan teknologi pengolahan dan akses pasar.

Di sepanjang rantai pasok, terdapat pelaku lain yang berperan sebagai pengolah tahap pertama (green bean), tahap kedua (roasted bean), dan tahap ketiga (powder). Namun, praktik hilirisasi belum merata di semua daerah. Sebagian besar pengolahan masih dilakukan oleh kelompok kecil atau usaha rumah tangga dengan kapasitas terbatas. Secara umum, tantangan awal yang teridentifikasi meliputi: tingkat hilirisasi yang masih rendah di tingkat petani, ketergantungan pada penjualan bahan mentah (ceri merah), variasi kapasitas pengolahan antar daerah, dan akses pasar terbatas, khususnya untuk produk olahan bernilai tambah. Potret awal ini memberikan dasar untuk analisis lebih lanjut. Melalui penelitian ini, dilakukan pengukuran nilai tambah dengan metode Hayami, penilaian keberlanjutan value chain dengan Rapfish, serta penyusunan strategi penguatan hilirisasi dengan AHP, sehingga kondisi riil dapat dipetakan secara lebih mendalam.

Waktu dan Lokasi Penelitian

Penelitian ini dilaksanakan pada bulan Mei-Juli 2024 di tiga Kabupaten yang berada di wilayah Provinsi Jawa Timur, yaitu di Kabupaten Jember, Kabupaten Banyuwangi, dan Kabupaten Bondowoso. Alasan dalam pemilihan daerah penelitian tersebut, karena hasil komoditas kopi dari ketiga daerah tersebut memiliki jumlah panen tertinggi dan masih ditemukan masalah pada *value chain* dan hilirisasi. Ketiga daerah telah mampu merepresentasikan hasil produksi kopi secara keseluruhan di Provinsi Jawa Timur (BPS, 2021).

Pengumpulan Data

Gambar 1: Tahapan Penelitian

Responden dipilih dengan teknik *purposive random sampling* untuk memastikan keterwakilan aktor dalam rantai nilai kopi. Sebanyak 12 responden dilibatkan, masing-masing 4 orang di tiap kabupaten dengan rincian: (1) petani kopi, (2) pengolah tahap pertama, (3) pengolah tahap kedua, dan (4) pengolah tahap ketiga. Survei Pakar: Dilakukan untuk merumuskan indikator keberlanjutan dan strategi penguatan hilirisasi, dengan melibatkan 1 akademisi bidang pertanian dan 2 praktisi kopi. Instrumen utama berupa kuesioner terstruktur dan pedoman wawancara. Kuesioner digunakan untuk memperoleh data kuantitatif mengenai nilai tambah, keberlanjutan, dan preferensi strategi, sedangkan wawancara mendalam digunakan untuk menggali informasi kualitatif terkait praktik hilirisasi dan hambatan di

lapangan. Pemilihan instrumen ini didasarkan pada kebutuhan untuk mengombinasikan data kuantitatif dan kualitatif secara komplementer. Data sekunder diperoleh dari publikasi resmi seperti BPS, artikel ilmiah terindeks, laporan kebijakan, dan penelitian terdahulu yang relevan. Data ini digunakan untuk memperkuat kerangka teori, membandingkan temuan empiris, serta memperjelas kondisi awal rantai nilai kopi di Jawa Timur.

Analisis Data

Analisis yang digunakan dalam penelitian ini meliputi analisis kualitatif dan kuantitatif. Dalam penelitian ini, analisis kualitatif dan kuantitatif dilakukan untuk menilai value chain terkini, mengidentifikasi indikator hilirisasi melalui Hayami analisis untuk mengetahui value added terbaik dari masing-masing pemrosesan. Metode Hayami menjawab seberapa besar nilai tambah hilirisasi kopi dari aspek ekonomi mikro. Metode ini melibatkan observasi lapangan, studi pustaka, analisis deskriptif, dan wawancara mendalam. Sementara itu, analisis kuantitatif adalah metode yang digunakan untuk menganalisis. Dalam penelitian ini, analisis kuantitatif digunakan untuk menganalisis keberlanjutan menggunakan Rapfish Multidimensional Scaling (MDS) melalui analisis Rapfish MDS. Rapfish MDS mengukur tingkat keberlanjutan value chain kopi melalui hilirisasi dari aspek ekonomi, ekologi, dan sosial. Sedangkan dalam analisis perumusan strategi menggunakan Pairwise Comparison Matrix untuk menciptakan strategi dengan menggunakan Metode AHP. Metode ini memberikan strategi mana yang harus diprioritaskan untuk penguatan hilirisasi berdasarkan keputusan strategis multi-aktor. Ketiga metode ini dipilih karena saling melengkapi dan relevan dalam menjawab tujuan penelitian, yaitu mengukur nilai tambah, menilai keberlanjutan, dan merumuskan strategi penguatan hilirisasi kopi dalam kerangka ekonomi hijau. Penjelasan lebih detail terkait penerapan implementasi ketiga metode tersebut sebagai berikut:

Metode Hayami

Menurut Hayami dkk. (1987), metode Hayami merupakan pendekatan untuk menghitung value added dari suatu produk, cara kerja singkat dari metode ini yaitu mengukur selisih antara nilai output (harga jual produk olahan) dengan input (biaya bahan baku + biaya produksi). Metode Hayami dianggap mudah digunakan dan dipahami dan menghasilkan informasi yang cukup lengkap (Hidayat dkk., 2012). Metode ini dipilih karena penelitian ini ingin menilai kontribusi hilirisasi kopi terhadap peningkatan pendapatan petani melalui value added yang diperoleh pelaku rantai pasok dapat digunakan untuk mendapatkan informasi yang lebih menyeluruh (Effendi, 2021). Metode Hayami memberikan peran dalam kerangka penelitian karena memberikan gambaran ekonomi mikro berupa besaran nilai tambah di tiap tahapan rantai nilai kopi.

Penelitian dilakukan dengan melakukan wawancara secara langsung kepada petani, pengolah tahap pertama, pengolah tahap kedua, dan pengolah tahap ketiga pertanian kopi di Provinsi Jawa Timur. Pengambilan sampel dilakukan secara *purposive sampling* dengan kriteria pemilihan tiga sampel lokasi berdasarkan klasifikasi tiga daerah penghasil kopi terbesar di Provinsi Jawa Timur yaitu Kabupaten Banyuwangi, Kabupaten Jember, dan Kabupaten Bondowoso, dari tiga daerah ini telah merepresentasikan seluruh produksi pertanian kopi di Provinsi Jawa Timur. Data dan informasi yang dikumpulkan melalui klasifikasi peran petani kopi dalam aspek penghitungan margin, dan *value added* di sepanjang *value chain*. Identifikasi aktivitas *value chain* didasarkan pada wawancara, observasi lapangan, dan kalkulasi perhitungan aktivitas *value added*. Rantai pasok yang terdiri dari ceri merah, *green bean*, *roast bean*, dan *powder*.

Fiba, I. R., &

Tabel 1: Metode Hayami untuk Analisis Nilai Tambah

No	Output, Input, Harga	Formula
1	Output (kg/produksi)	Α
2	Input Bahan Baku (kg/produksi)	В
3	Input Tenaga Kerja (jam/produksi)	С
4	Faktor Konversi	D=A/B
5	Koefisien Tenaga Kerja	E=C/B
6	Harga Produk	F
7	Tarif Upah (Rp/Produksi)	G
	Pendapatan dan Keuntungan	
8	Input Bahan Baku (IDR/kg)	Н
9	Input Arus Lainnya (IDR/kg)	1
10	Produk (IDR/kg)	J=DxF
11	a. Nilai Tambah (Rp/kg)	K=J-H-I
	b. Rasio Nilai Tambah (%)	L=K/J
12	a. Pendapatan Tenaga Kerja (Rp/tenaga kerja)	M=ExG
	b. Porsi Tenaga Kerja (%)	N=M/K
13	a. Keuntungan (Rp/kg)	O=K-M
	b. Tingkat Keuntungan (%)	P=O/J
	Reply Services untuk Faktor Produksi	
14	Margin (IDR/kg)	Q=J-F
	a. Pendapatan Tenaga Kerja Langsung (%)	R=M/Q
	b. Sumbangan input lainnya (%)	S=I/Q
	c. Keuntungan perusahaan (%)	T=0/Q

Sumber: Hayami dkk. (1987)

Metode Rapfish Multidimensional Scalling (MDS)

Rapfish adalah metode multidimensional scaling yang digunakan untuk menilai tingkat keberlanjutan suatu sistem dari beberapa dimensi ekonomi, ekologi, sosial (Susanty dkk., 2020). Cara kerja metode ini yaitu menilai indikator pada tiap dimensi menggunakan skoring (0-2), kemudian diolah dengan MDS untuk menghasilkan indeks keberlanjutan. Metode ini dipilih karena memiliki relevansi yang cukup kuat dengan konteks green economy, tidak hanya menilai aspek ekonomi, tetapi juga ekologi dan sosial. Metode Rapfish MDS menjadi alat untuk memotret kondisi keberlanjutan value chain kopi dari berbagai dimensi, sehingga melengkapi hasil metode Hayami. Pemilihan indikator keberlanjutan pada metode Rapfish MDS didasarkan pada temuan di lapangan, wawancara, dan studi literatur yang relevan dengan topik penelitian. Hasil penelitian ini kemudian didiskusikan dengan pakar yang telah ditentukan sebelumnya. Indikator keberlanjutan yang digunakan disajikan dalam Tabel 2.

Tabel 2: Indikator Dimensi Keberlanjutan

No.	Aspek	Variabel	Indikator	Sumber
1.	Ekonomi	Akses Pasar	[0] Akses pasar kurang baik karena petani dapat menjual komoditasnya namun harus ke perusahaan yang bersangkutan. Komoditas <i>reject</i> menjadi <i>waste</i> . [1] Akses pasar cukup baik karena petani dapat menjual komoditasnya ke perusahaan maupun ke pasar lain. Komoditas <i>reject</i> tidak menjadi <i>waste</i> [2] Akses pasar baik karena petani menjual komoditasnya ke perusahaan dan disediakan pasar cadangan sehingga komoditas <i>reject</i> tidak menjadi <i>waste</i>	Sriwana dkk. (2022)

No.	Aspek	Variabel	Indikator	Sumber
		Akses Informasi Harga	 [0] Akses informasi harga kurang baik karena tidak tersedia informasi harga [1] Akses informasi harga cukup baik karena kurang tersedia informasi harga dari perusahaan [2] Akses informasi harga baik karena tersedia informasi harga dari perusahaan 	Sriwana dkk. (2022)
	Ekonomi	Sumber Penghasilan Petani	[0] Paruh Waktu [1] Musiman [2] Penuh Waktu	Singh dkk. (2018)
		Klasifikasi Pemasaran Produk	[0] Lokal [1] Nasional [2] Internasional	Tesfamichael & Pitcher (2006)
		Ketersediaan Modal	[0] Tidak memiliki modal[1] Kekurangan modal[2] Cukup dan tidak ada masalah	Tesfamichael & Pitcher (2006)
		Frekuensi Bimbingan Teknis	[0] Tidak pernah dilakukan frekuensi bimbingan teknis[1] Frekuensi bimbingan teknis dilaksanakan 1x/bulan[2] Frekuensi bimbingan teknis dilaksanakan 1x/minggu	Susanty dkk. (2020)
		Kesetaraan Gender	[0] Porsi pekerja perempuan <10%[1] Porsi pekerja perempuan 10% - 15%[2] Porsi pekerja perempuan >20%	Sukmawati dkk. (2020)
2.	Sosial	Kesadaran Petani akan K3	[0] Rendah, petani tidak mengetahui K3[1] Sedang, petani hanya mengetahui urgensi dari K3 namun tidak melaksanakan[2] Tinggi, petani mengetahui urgensi dari K3 dan melaksanakannya	Sriwana dkk. (2022)
		Frekuensi Konflik	[0] Sering terjadi [1] Jarak terjadi [2] Tidak pernah terjadi	Novita dkk. (2012)
		Status Kepemilikan Lahan	[0] Semuanya sewa[1] Sebagian milik pribadi dan sebagian merupakan sewa[2] Semuanya dimiliki secara pribadi	Tesfamichael & Pitcher (2006)
3.	Ekologi	Penanganan Limbah Produksi	 [0] Belum melakukan penerapan reuse, reduce, recycle (3R) pada produksi [1] Melakukan salah satu dari 3R [2] Melakukan penerapan 3R secara keseluruhan pada produksi 	Sriwana dkk. (2022)
		Kesesuaian Teknis Budidaya dengan GAP	[0] Tidak mengetahui teknik budidaya GAP[1] Mengetahui teknik budidaya GAP namun tidak diterapkan(2) Mengetahui teknik budidaya GAP dan menerapkan	Saragih dkk. (2019)
		Penggunaan Jenis Pupuk	[0] Menggunakan pupuk anorganik dalam budidaya[1] Terkadang menggunakan pupuk anorganik dalam budidaya[2] Menggunakan pupuk organik dalam proses budidaya	Wahyudi (2009)
		<i>Reject</i> Produk	[0] Produk dikembalikan >20%[1] Produk dikembalikan 10% - 20%[2] Produk dikembalikan <5% - <15%	Moktadir dkk. (2018)

Fiba, I. R., &

No.	Aspek	Variabel	Indikator	Sumber
		Tingkat Literasi Lingkungan Petani	 [0] Belum disosialisasikan dan dipahami mengenai literasi lingkungan [1] Sudah diterapkan sosialisasi mengenai literasi lingkungan namun belum dipahami [2] Sudah diterapkan sosialisasi mengenal literasi lingkungan dan sudah dipahami 	Tesfamichael & Pitcher (2006)

Pengukuran indeks keberlanjutan dilakukan ketika sudah mendapatkan indikator keberlanjutan yang valid. Pengukuran indeks keberlanjutan value chain dihitung menggunakan Multidimensional Scaling dan dilakukan oleh petani kopi. Menurut Dwikorawati (2012) pengukuran indeks keberlanjutan dilakukan dengan melalui beberapa tahapan antara lain:

a. Penentuan Rentang

Skala setiap indikator pada tahap ini dilakukan pemberian skor berdasarkan hasil pengamatan sesuai dengan penilaian yang ditetapkan dengan menggunakan skala 0-2. Semakin kecil nilai yang diisikan maka semakin buruk kondisi yang diartikan dan semakin besar nilai yang diisikan maka semakin baik kondisi yang diartikan. Skoring didasarkan pada hasil analisis data yang telah dilakukan

b. Uji Kesesuaian

Tahap ini dilakukan untuk mengetahui keakuratan indikator-indikator yang dikaji pada MDS. Uji kesesuaian berlandaskan pada analisis Monte Carlo, nilai S-Stress, dan R¹. Hasil analisis nilai stress yang baik memiliki nilai kurang dari 0,25 (Eunike dkk., 2018). Sedangkan hasil nilai koefisien determinasi (R²) yang baik memiliki nilai mendekati 1 (Adiga dkk., 2016).

c. Perhitungan Indeks Keberlanjutan

Pada tahap ini dilakukan penilaian keseluruhan Indikator masing-masing dimensi berkelanjutan oleh tiga responden. Hasil penilaian diklasifikasikan menjadi empat kelas.

Tabel 3: Skala Indeks Keberlanjutan

Indeks	Indikator Keberlanjutan
00,00-25,00	Tidak Berkelanjutan
25,01-50,00	Kurang Berkelanjutan
50,01-75,00	Cukup Berkelanjutan
75,01-100,00	Sangat Berkelanjutan

Sumber: Susanty dkk. (2020)

Metode Analytical Hierarchy Process (AHP)

Metode AHP (Analytic Hierarchy Process) merupakan salah satu pendekatan dalam pengambilan keputusan berdasarkan penentuan strategi alternatif yang menggunakan beberapa variabel melalui proses analisis berjenjang (Irawan dkk., 2017). Metode ini digunakan untuk membangun model permasalahan yang tidak terstruktur, sering kali untuk menangani masalah yang bersifat terukur (kuantitatif), membutuhkan penilaian subjektif (judgement), atau dalam situasi yang kompleks dan kurang terstruktur, di mana data statistik mungkin minim atau tidak tersedia, dan bergantung pada informasi kualitatif yang didasarkan pada persepsi atau pengalaman (Sasongko dkk., 2017). Terdapat beberapa prinsip penting dalam metode ini, yaitu 1) Penyusunan hierarki; 2) Penilaian kriteria dan alternatif menggunakan skala 1-9; 3) Penentuan prioritas melalui matriks perbandingan berpasangan (Pairwise Comparison Matrix); dan (4) Konsistensi rasio harus kurang dari 0,1 (Saaty & Vargas, 2012).

Metode ini dipilih karena pada aspek penelitian ini membutuhkan pemilihan strategi prioritas penguatan hilirisasi kopi, yang melibatkan banyak kriteria dan aktor (petani, pemerintah, akademisi) yang didasarkan pada hasil perhitungan pada metode Hayami dan metode *Rapfish* MDS. Metode ini berperan dalam menghasilkan strategi prioritas berdasarkan pertimbangan para stakeholder, sehingga menjadi tahap akhir setelah mengetahui nilai tambah (Hayami) dan kondisi keberlanjutan (Rapfish).

Tabel 4: Skala Kepentingan Analytical Hierarchy Process (AHP)

Intensitas Kepentingan	Keterangan
1	Sama penting
3	Sedikit lebih penting
5	Lebih penting
7	Jelas lebih penting
9	Mutlak penting
2,4,6,8	Nilai antara dua pertimbangan yang berdekatan

Sumber: Saaty & Vergas (2012)

Hasil dan Pembahasan

Agroindustri pertanian kopi di Provinsi Jawa Timur merupakan salah satu agroindustri kopi terbesar di Indonesia. Berdasarkan data 2023 perkembangan produksi kopi di provinsi sentra di Indonesia dari Kementerian Pertanian tahun 2022, agroindustri pertanian kopi di Provinsi Jawa Timur memiliki rata-rata produksi sebesar 50.138 ton berada pada peringkat ke 6 dari total keseluruhan sebesar 770.379 ton yang berkontribusi terhadap total *share* tahun 2022 secara keseluruhan sebesar 5,76 %. Kontribusi Provinsi Jawa Timur terhadap produksi pertanian kopi di Indonesia yang secara kumulatif memberikan kontribusi sebesar 76,15% dari total produksi kopi pada tahun 2018-2022.

Tabel 5: Perkembangan Produksi Kopi di Provinsi Sentra di Indonesia, 2018-2022

No.	Provinsi		Pı	roduksi (To	n)		Rata-rata	Share	Kumulatif
No	Provinsi	2018	2019	2020	2021	2022	produksi	2022 (%)	Share (%)
1	Sumatera Selatan	193.507	191.081	198.945	211.681	212.452	201.533	26,73	26,73
2	Lampung	110.597	117.111	117.311	116.281	124.528	117.166	15,67	42,40
3	Sumatera Utara	71.023	74.922	76.597	80.871	86.956	78.074	10,94	53,34
4	Aceh	70.774	72.652	73.419	74.328	75.294	73.293	9,47	62,82
5	Bengkulu	60.346	62.567	62.279	62.849	60.139	61.636	7,57	70,38
6	Jawa Timur	64.529	49.157	45.279	45.914	45.812	50.138	5,76	76,15
	Lainnya	185.275	185.022	188.550	194.267	189.581	188.539	23,85	100,00
	Indonesia	756.051	752.511	762.380	786.191	794.762	770.379	100,00	

Sumber: Ditjen Perkebunan (2023)

Pelaku yang terlibat dalam rantai pasok agroindustri kopi di Provinsi Jawa Timur mulai dari petani di hulu hingga pengolah kopi di hilir yang merupakan pemangku kepentingan yang memiliki peran dalam keberlangsungan *value chain* hilirisasi pertanian kopi di Provinsi Jawa Timur. Pelaku tersebut terdiri dari petani, pengepul, pengolah tahap 1, dan pengolah tahap 2. Pengambilan sampel daerah dilakukan berdasarkan klasifikasi tiga daerah penghasil kopi terbesar di Jawa Timur yaitu Kabupaten Banyuwangi, Kabupaten Jember, dan Kabupaten Bondowoso, melalui tiga daerah ini telah merepresentasikan seluruh produksi kopi di Provinsi

Fiba, I. R., & Salsabila, R. A.

Jawa Timur. Pengambilan daerah ini berdasarkan pada tingkat volume jumlah hasil panen, luas wilayah Perkebunan kopi, dan kualitas kopi yang telah dihasilkan.

Peningkatan Value Added Hayami Method

Pendekatan metode Hayami dalam penghitungan value added merupakan sebuah metode yang sangat relevan sebagai rekomendasi bagi para petani dalam melakukan hilirisasi pengolahan menjadi produk jadi dengan peningkatan yang cukup besar. Berdasarkan hasil penelitian Putra dkk. (2020) menjelaskan bahwa agroindustri pertanian kopi Kabupaten Pemalang memiliki value added sebesar 99,87 persen yang akan diterima oleh pemilik industri pertanian kopi. Sedangkan penelitian menurut Hasni dkk. (2022) dengan menggunakan metode yang sama yaitu metode Value added Hayami pada agroindustri pertanian kopi di Kabupaten Aceh Tengah menjelaskan bahwa petani yang menjual hasil panennya langsung kepada tengkulak hanya memberikan value added sebesar 6,25 % untuk penjualan ceri merah dan 10% untuk kopi parchment basah. Akan tetapi, jika petani kopi yang menjual produknya dalam bentuk green bean memiliki value added hingga 22,41%. Peningkatan terbesar pada pelaku pengolah kedua karena petani pengolah mempunyai value added tertinggi di angka 43,53%. Temuan tersebut mengindikasikan bahwa petani kopi sebaiknya menjual hasil kopi dalam bentuk yang sudah diolah sehingga mengurangi ketergantungan dengan tengkulak. Hal ini dapat menjadi sebuah strategi dalam peningkatan pendapatan dan kesejahteraan petani kopi.

Implementasi metode analisis *Value added* Hayami dilakukan pada agroindustri pertanian kopi di Provinsi Jawa Timur guna mengetahui peningkatan *value added* pada hasil pertanian kopi yang dihasilkan oleh masing-masing aktor (Hayami dkk., 1987). Langkah penerapan metode analisis *Value added* Hayami dilakukan dengan melakukan identifikasi semua tahap proses produksi dari bahan mentah hingga produk jadi, pengumpulan data biaya produksi dan biaya tenaga kerja serta biaya lainnya yang dibutuhkan, perhitungan analisis *value added* dengan kerangka metode Hayami, dan melakukan analisis bagaimana setiap komponen tersebut berkontribusi terhadap *value added* total. Adapun hasil perhitungan dari metode analisis *Value added* Hayami yang disajikan dalam hasil pada tabel di bawah ini.

Hasil penelitian menunjukkan bahwa pelaku yang terlibat dalam rantai pasok agroindustri pertanian kopi di Jawa Timur terdiri dari empat pelaku utama yang terdiri dari petani, pengolah tahap pertama, pengolah tahap kedua, dan pengolah tahap ketiga (Hayami dkk., 1987). Dalam praktiknya, petani kopi di Provinsi Jawa Timur sebagian besar membudidayakan kopi jenis Robusta dan Arabika. Selain itu, hasil produk yang dihasilkan untuk kemudian di jual dari masing-masing aktor mulai dari bentuk ceri merah, green bean, roast bean, dan powder tergantung dari masing-masing peran aktor. Berdasarkan hasil wawancara dengan empat aktor utama dalam proses rantai pasok mulai dari petani hingga pengolah tahap ketiga di daerah penghasil kopi terbesar di Jawa Timur yaitu Kabupaten Banyuwangi, Kabupaten Jember, dan Kabupaten Bondowoso. Maka didapatkan hasil Penelitian awal terkait analisis luas lahan dalam aspek pembudidayaan kopi, mulai dari yang pertama yaitu agroindustri pertanian kopi "KUB Arum Sukma" yang berasal dari Kabupaten Jember memiliki luas lahan sebesar 460 hektare. Selanjutnya yaitu agroindustri pertanian kopi "Kopi Raisa" yang berasal dari Kabupaten Bondowoso yang memiliki luas lahan 600 hektar, dan agroindustri pertanian kopi "Kopi Lego" yang berasal dari Kabupaten Banyuwangi yang memiliki luas lahan 2,5 hektar dari luas keseluruhan agroindustri pertanian kopi di Gombengsari, Kabupaten Banyuwangi yang memiliki luas 4300 hektare.

Tabel 6: Perhitungan Value Added Para Pelaku value chain Industri Kopi di Provinsi Jawa Timur

			Jen	Jember			Bondc	Bondowoso			Banyu	Banyuwangi	
Š.	No. Output, Input, Harga	Petani	Prosesor Tahap Pertama	Prosesor Tahap Kedua	Prosesor Tahap Ketiga	Petani	Prosesor Tahap Pertama	Prosesor Tahap Kedua	Prosesor Tahap Ketiga	Petani	Prosesor Tahap Pertama	Prosesor Tahap Kedua	Prosesor Tahap Ketiga
1	Output (kg/produksi)	25000	6250	2000	4500	30000	2000	4500	3600	2500	625	200	200
2	Input Bahan Baku (kg/ produksi)	25000	25000	6250	2000	30000	30000	2000	4500	2500	2500	625	200
က	Input Tenaga Kerja (jam/ produksi)	3840	2880	1920	1920	1440	096	096	720	720	240	240	240
4	Faktor Konversi	1	0,25	0,80	06'0	1	0,17	06'0	08'0	1	0,25	08'0	1
2	Koefisien Tenaga Kerja	0,153	0,115	0,307	0,384	0,048	0,032	0,192	0,160	0,288	960'0	0,384	0,480
9	Harga Produk	17000	130000	180000	250000	17000	110000	115000	200000	14000	75000	160000	200000
7	Tarif Upah (Rp/Produksi)	6250	6250	8750	10000	10000	9386	8333	10714	10000	8333	12000	14000
	Pendapatan dan Keuntungan	۰											
∞	Input Bahan Baku (IDR/kg)	280	8000	18000	11000	217	300	10000	7500	20	2000	10000	2000
6	Input Arus Lainnya (IDR/ kg)	1000	300	400	2000	2000	100	3000	2000	7000	100	4000	2000
10	Produk (IDR/kg)	17000	32500	144000	225000	17000	18333	103500	160000	14000	18750	128000	200000
11	a. Nilai tambah (IDR/kg)	15720	24200	125600	209000	11783	17933	90500	147500	0869	13650	114000	190000
	b. Rasio nilai tambah (%)	95%	74%	87%	93%	%69	%86	87%	95%	20%	73%	%68	%56
12	a. Pendapatan tenaga kerja (IDR/tenaga kerja)	096	720	2688	3840	480	297	1600	1714	2880	800	4608	6720
	b. Porsi Tenaga Kerja (%)	%9	3%	7%	7%	4%	7%	7%	1%	41%	%9	4%	4%
13	a. Keuntungan (IDR/kg)	14760	23480	122912	205160	11303	17636	88900	145786	4100	12850	109392	183280
	b. Tingkat Keuntungan (%)	87%	72%	85%	91%	%99	%96	%98	91%	79%	%69	85%	95%

Analysis and Strategy of Strengthening Green Economy Through the Value Chain Concept to Support Downstreaming of Coffee Farming in East Java

Fiba, I. R., & Salsabila, R. A.

Pada saat penelitian dilakukan, pemetaan volume hasil produksi pada agroindustri pertanian kopi di Provinsi Jawa Timur sangat bervariasi dari ketiga daerah penghasil kopi terbesar dihasilkan petani mampu menghasilkan input produk sebanyak 2.500-30.000 kg (100% produksi) kepada pengolah tahap pertama. Tingkat harga yang ditetapkan oleh petani sangat bervariasi mulai dari harga Rp14.000-Rp17.000 per kg buah ceri merah dengan *profit rate* sebesar 29% hingga 87% yang di dapatkan oleh petani. Selanjutnya yaitu pengolah tahap pertama mampu menjual sebanyak 625-6250 kg dengan persentase penjualan 25% dari total keseluruhan input bahan baku yang di produksi. Hal ini dikarenakan pengolah tahap pertama melakukan proses pengolahan dari produk kopi berbentuk ceri merah menjadi produk kopi berbentuk *green bean*, pengolahan ceri menjadi *green bean* memiliki persentase 1 kg *green bean* berasal dari total input bahan produksi sebesar 4-4,5 Kg Ceri. Sehingga mengalami penurunan akan tetapi hasil produk *green bean* mengalami peningkatan harga di angka Rp75.000-130.000 per kg dengan *profit rate* sebesar 72% hingga 96% yang akan didapatkan oleh pengolah tahap pertama.

Tahapan selanjutnya yaitu masuk ke pengolah tahap kedua dengan hasil penerimaan input bahan baku berupa produk kopi berbentuk *green bean* dari pengolah tahap pertama sebesar 625-6250 kg yang kemudian pengolah tahap kedua melakukan pengolahan dari *green bean* menjadi *roast bean* dengan tingkat penurunan 20% dari total input bahan baku yang dikelola. Produk *roast bean* yang dihasilkan dari pengolahan tahap kedua sebesar 500-5000 kg dengan peningkatan harga di angka Rp115.000-180.000 per kg dengan *profit rate* yang didapatkan oleh pengolah tahap kedua sebesar 85% hingga 86% yang selanjutnya akan didistribusikan kepada pengolah tahap ketiga. Selanjutnya pada pengolah tahap ketiga akan melakukan pengolahan kembali dari produk *roast bean* yang dihasilkan menjadi produk kopi berupa *powder* atau kopi bubuk dengan rata rata penurunan angka 0-10% dengan total hasil *powder* pengolah tahap ketiga sebesar 500-4500 kg. Pada tahap akhir pengolahan tahap ketiga yang didistribusikan penjualan kepada konsumen berada di harga Rp200.000-Rp250.000 per kg dengan *profit rate* sebesar 91% hingga 92% yang akan diterima oleh pengolah tahap ketiga.

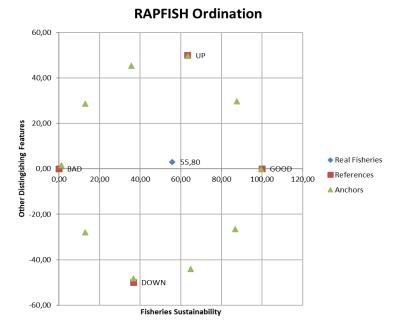
Berdasarkan data hasil penelitian peningkatan *value added* dari masing-masing aktor rantai pasok pertanian kopi di Provinsi Jawa Timur memiliki nilai yang berbeda-beda. Kabupaten Banyuwangi memiliki persentase kenaikan *value added* tertinggi, dengan petani melakukan penjualan produk kopi berbentuk ceri merah maka *value added* yang di dapatkan oleh petani sebesar 50% sedangkan ketika pengolah tahap ketiga menjual produk kopi dalam bentuk *powder* atau kopi bubuk *value added* yang akan didapatkan sebesar 95%. Selanjutnya Kabupaten Bondowoso memiliki peningkatan *value added* peringkat kedua, dengan petani melakukan penjualan produk kopi berbentuk ceri merah maka *value added* yang di dapatkan oleh petani sebesar 69% sedangkan ketika pengolah tahap ketiga menjual produk kopi dalam bentuk *powder* atau kopi bubuk *value added* yang didapatkan sebesar 92%. Kabupaten Jember merupakan peringkat terakhir dalam peningkatan *value added* yang dihasilkan karena dengan petani melakukan penjualan produk kopi berbentuk ceri merah maka *value added* yang di dapatkan oleh petani sebesar 92% sedangkan ketika pengolah tahap ketiga menjual produk kopi dalam bentuk *powder* atau kopi bubuk *value added* yang didapatkan sebesar 93%.

Kabupaten Banyuwangi dan Kabupaten Bondowoso memiliki peningkatan *value* added terbesar dikarenakan kedua daerah ini tidak melakukan penjualan produk kopi dalam bentuk ceri merah. Sedangkan Kabupaten Jember memiliki persentase kenaikan *value* added yang tidak terlalu besar dikarenakan petani kopi juga melakukan penjualan kopi berbentuk ceri merah sebesar 40% dari total produksi yang dihasilkan yang kemudian dijual kepada

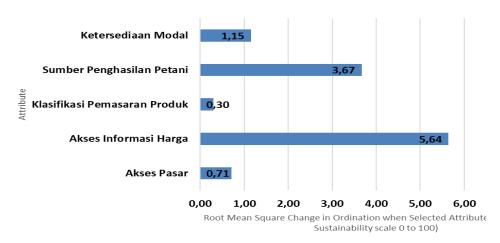
kolektor guna keperluan ekspor produk. Peningkatan *value added* yang baik bagi agroindustri pertanian kopi di Provinsi Jawa Timur menandakan bahwa petani akan menerima *value added* yang tinggi ketika mampu melakukan hilirisasi atau pengolahan produk kopi dari ceri merah menjadi kopi bubuk (*powder*) (Hayami dkk., 1987). Temuan menegaskan hilirisasi, khususnya pengolahan hingga tahap kopi bubuk (*powder*), memberikan *value added* tertinggi bagi petani maupun pengolah.

Penelitian yang telah dilakukan jika dibandingkan dengan penelitian sebelumnya, hasil ini sejalan dengan Sriwana dkk. (2022) yang menunjukkan adanya perbedaan rasio value added antar aktor dalam rantai pasok kopi, di mana petani memperoleh 57,77%, kelompok tani 67,13%, dan pengumpul 81,04%. Hasil penelitian ini juga konsisten dengan temuan Idsan dan Andanu (2025) juga menemukan rasio value added yang tinggi pada produk hilir, seperti kopi bubuk premium (88,70%) dan roasted bean (85,45%), dibandingkan dengan produk hulu seperti green bean asalan (47,21%). Hal ini menguatkan bahwa semakin jauh proses hilirisasi, semakin besar pula value added yang tercipta. Namun, penelitian ini memberikan kontribusi baru dengan menekankan variasi antarwilayah (Banyuwangi, Bondowoso, dan Jember) yang belum banyak dikaji sebelumnya, khususnya dalam kaitannya dengan praktik penjualan ceri merah yang menurunkan nilai tambah.

Selain itu, penelitian Hasanah (2022) dan Wibowo & palupi (2022) menunjukkan variasi rasio value added yang bergantung pada metode pengolahan, seperti natural, full washed, dan honey. Dibandingkan dengan temuan tersebut, hasil penelitian ini memiliki kontribusi baru dari penekanan pada variasi antarwilayah dengan perspektif spasial (berbasis daerah) dan aktor rantai pasok yang lebih komprehensif. Dengan demikian, makna temuan penelitian ini tidak hanya menegaskan pentingnya hilirisasi dalam peningkatan value added, tetapi juga menunjukkan perlunya strategi kebijakan daerah dalam memperkuat rantai nilai kopi di Jawa Timur, agar petani tidak berhenti pada penjualan ceri merah, melainkan terdorong untuk masuk ke pengolahan hilir yang lebih menguntungkan. Sehingga dalam hal ini diperlukan analisis keberlanjutan guna mendukung penguatan value chain untuk menentukan seberapa besar tingkat keberlanjutan dari proses hilirisasi agroindustri pertanian kopi di Provinsi Jawa Timur.


Analisis Multidimensional Scaling dengan Metode Rapfish

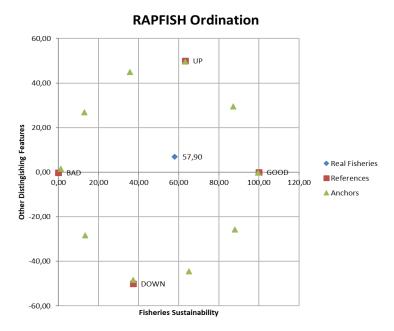
Rapid appraisal for fisheries (Rapfish) adalah metode analisis untuk mengevaluasi keberlanjutan pertanian kopi secara multidisipliner yang didasarkan pada teknik ordinasi (menempatkan sesuatu pada urutan atribut yang terukur) dengan Multi-Dimensional Scaling. MDS pada dasarnya merupakan teknik statistik yang mencoba melakukan transformasi multidimensi ke dalam dimensi yang lebih rendah (Fauzi, 2005). Pendekatan ini telah banyak diadaptasi di sektor pertanian dan perikanan karena kemampuannya mendeteksi level keberlanjutan serta sensitivitas atribut utama (Ismail dkk. 2024). Terdapat 3 dimensi yang digunakan dalam penelitian ini, yaitu dimensi ekonomi, sosial, dan ekologi yang memiliki atribut masing-masing terkait dengan keberlanjutan.


Indeks Keberlanjutan Dimensi Ekonomi

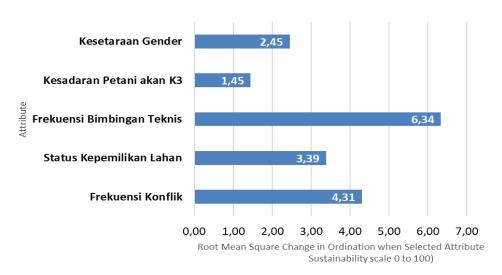
Pada indeks keberlanjutan dimensi ekonomi, digunakan lima atribut, meliputi (1) ketersediaan modal, (2) keuntungan petani, (3) klasifikasi harga, (4) akses informasi harga, dan (5) akses pasar. Hasil skor keberlanjutan dimensi ekonomi masuk dalam kategori cukup berkelanjutan dengan nilai 55,80 (Gambar 2).

Fiba, I. R., & Salsabila, R. A.

Gambar 2: Indeks Keberlanjutan Dimensi Ekonomi


Gambar 3: Indikator Kunci Dimensi Ekonomi

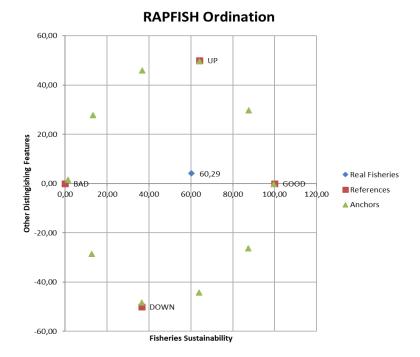
Pada hasil analisis leverage, atribut paling sensitif dalam dimensi ekonomi ditunjukkan akses informasi harga (Gambar 3). Akses transparansi harga secara langsung dapat meningkatkan posisi tawar petani dan pendapatan mereka (Bermudez dkk. 2022). Dengan meningkatkan akses informasi ini, petani dapat menjual produk mereka pada harga yang lebih kompetitif dan adil, sehingga turut meningkatkan pendapatan dan keberlanjutan ekonomi dalam value chain kopi.


Indeks Keberlanjutan Dimensi Sosial

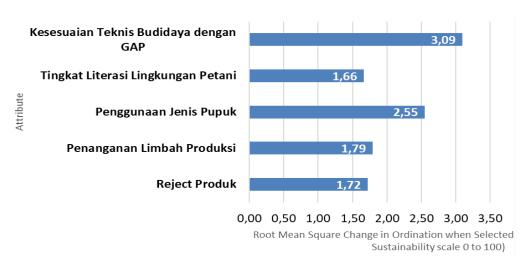
Pada indeks keberlanjutan dimensi sosial digunakan lima atribut, antara lain (1) kesetaraan gender, (2) kesadaran petani akan K3, (3) frekuensi bimbingan teknis, (4) status kepemilikan lahan, dan (5) frekuensi konflik. Hasil skor keberlanjutan dimensi sosial masuk dalam kategori cukup berkelanjutan dengan nilai 57,90 (Gambar 4).

Pada hasil analisis leverage, atribut paling sensitif dalam dimensi sosial ditunjukkan Frekuensi Bimbingan Teknis (Gambar 5). Frekuensi bimbingan teknis yang tinggi mampu meningkatkan pengetahuan, keterampilan, dan kesadaran petani terhadap praktik pertanian yang baik dan berkelanjutan. Studi di China memperkuat bahwa pelatihan teknis (offline maupun online) memainkan peran penting dalam mengurangi ketidakpastian dan mempercepat penerapan teknologi pertanian (Xue & Cao, 2022).

Gambar 4: Indeks Keberlanjutan Dimensi Sosial



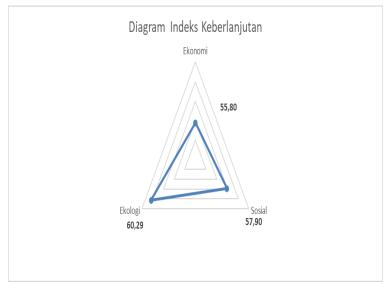
Gambar 5: Indikator Kunci Dimensi Sosial


Indikator Keberlanjutan Dimensi Ekologi

Pada indeks keberlanjutan dimensi ekologi digunakan lima atribut, antara lain (1) kesesuaian teknis budidaya dengan *Good Agricultural Practices* (GAP), (2) tingkat literasi lingkungan petani, (3) penggunaan jenis pupuk, (4) penanganan limbah produksi, dan (5) *reject* produk. Hasil skor keberlanjutan dimensi ekologi masuk dalam kategori cukup berkelanjutan dengan nilai 60,29 (Gambar 6).

Fiba, I. R., &

Gambar 6: Indikator Keberlanjutan Dimensi Ekologi


Gambar 7: Indikator Kunci Dimensi Ekologi

Pada hasil analisis leverage, atribut paling sensitif dalam dimensi ekologi ditunjukkan Kesesuaian Teknis Budidaya dengan GAP (Gambar 7). Kesesuaian budidaya dengan GAP berkontribusi besar dalam meningkatkan kualitas hasil tani, efisiensi penggunaan sumber daya, dan menjaga kelestarian lingkungan. Penelitian ini sejalan dengan temuan bahwa praktik GAP dapat meningkatkan kualitas hasil panen kopi sambil mempromosikan kelestarian lingkungan (Alvarez dkk. 2024).

Hasil dari ketiga dimensi yang telah dianalisis menunjukkan semua dimensi masuk dalam kategori cukup berkelanjutan (Gambar 8). Artinya, sistem pertanian kopi di Jawa Timur memiliki fondasi keberlanjutan yang layak, namun masih memerlukan penguatan dalam aspek-aspek tertentu.

Berdasarkan hasil analisis leverage, setiap atribut pada masing-masing dimensi yang paling sensitif antara lain (a) dimensi ekonomi, atribut akses informasi harga, (b) dimensi sosial, atribut frekuensi bimbingan teknis, dan (c) dimensi ekologi, atribut kesesuaian teknis budidaya

dengan GAP. Ketiga atribut tersebut terbukti memiliki pengaruh terbesar dalam meningkatkan nilai indeks keberlanjutan. Oleh karena itu, menjadi sangat penting bagi pemerintah dan pemangku kepentingan untuk memfokuskan kebijakan dan program pada atribut-atribut ini guna mendorong pertumbuhan pertanian kopi yang lebih inklusif, efisien, dan berkelanjutan.

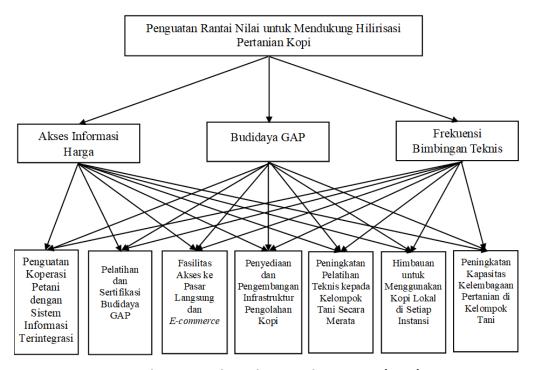
Gambar 8: Diagram Indeks Keberlanjutan

Analisis Monte Carlo

Tabel 7 menunjukkan bahwa selisih antara nilai indeks keberlanjutan tiap dimensi (ekonomi, sosial, dan ekologi) dengan hasil analisis Monte Carlo relatif kecil. Selisih kecil (<1) antara nilai indeks MDS dan Monte Carlo mengindikasikan rendahnya *noise* dan variasi dalam skoring dan telah sesuai dengan standar Rapfish (Ramadhantya, 2022). Perbedaan selisih yang kecil tersebut menandakan bahwa: (1) skoring terhadap tiap atribut dilakukan dengan presisi yang baik, sehingga potensi kesalahan penilaian kecil, (2) variasi hasil karena perbedaan pendapat responden sangat rendah, menunjukkan keseragaman persepsi terhadap keberlanjutan, (3) stabilitas metode MDS tinggi, sehingga hasil dapat diandalkan, (4) input data telah dilakukan secara akurat dan konsisten, meminimalkan potensi kesalahan teknis.

	Tabel 7: Hasii Ana	ansis ivionite cario	dan Goodii	ess oj Fil	
Dimensi	Nilai Indeks	Monte Carlo	Selisih	S-Stress	R²
Ekonomi	55,80	55,16	0,64	0,17	0,93
Sosial	57,90	57,20	0,70	0,16	0,93
Ekologi	60,29	59,97	0,32	0,17	0,93

Tabel 7: Hasil Analisis Monte Carlo dan Goodness of Fit


Hasil nilai *S-Stress* untuk tiap dimensi semuanya < 0,25, yaitu ekonomi (0,17), sosial (0,16), dan ekologi (0,17). Diperkuat hasil nilai koefisien determinasi (R²) memiliki nilai mendekati 1 di semua dimensi yaitu 0,94. Nilai S-Stress di bawah 0,25 dan R² mendekati 1 memperkuat bahwa model MDS dan atribut yang digunakan layak dan valid secara statistik (Ismail dkk., 2024; Ramadhantya dkk., 2022). Dengan demikian, metode Rapfish terbukti layak dan cukup baik digunakan sebagai alat evaluasi keberlanjutan pertanian kopi di Provinsi Jawa Timur, khususnya dalam konteks hilirisasi dan penguatan *value chain*.

Analytical Hierarchy Process (AHP)

Dalam analisis AHP ini, kami telah melakukan decomposition dengan menetapkan tujuan penelitian, sementara kriteria yang digunakan diperoleh dari atribut dengan nilai

Fiba, I. R., & Salsabila, R. A.

leverage tertinggi di setiap dimensi dari hasil analisis keberlanjutan Rapfish, yang dianggap sebagai indikator yang paling sensitif dan mendukung peningkatan keberlanjutan masingmasing dimensi, yaitu akses informasi harga (dimensi ekonomi), budidaya GAP (dimensi ekologi), dan frekuensi bimbingan teknis (dimensi sosial). Selanjutnya, kami melakukan diskusi dan skoring dengan dua aktor yang mewakili sektor pertanian di Bondowoso, Jember, dan Banyuwangi, serta satu pakar di bidang pertanian untuk merumuskan alternatif solusi terhadap permasalahan yang dihadapi oleh pertanian kopi di Jawa Timur. Adapun tujuan, kriteria, dan alternatif yang telah diidentifikasi disajikan dalam hierarki sebagai berikut:

Gambar 9: Analytical Hierarchy Process (AHP)

Berdasarkan Gambar 9, terdapat 7 (tujuh) alternatif yang dibandingkan yaitu (i) Penguatan koperasi petani dengan sistem informasi terintegrasi, (ii) pelatihan dan sertifikasi budidaya GAP, (iii) fasilitas akses ke pasar langsung dan *e-commerce*, (iv) penyediaan dan pengembangan infrastruktur pengolahan kopi, (v) peningkatan pelatihan teknis kepada kelompok tani secara, (vi) himbauan untuk menggunakan kopi lokal di setiap instansi merata, dan (vii) peningkatan kapasitas kelembagaan pertanian di kelompok tani.

Setelah memperoleh nilai rata-rata dari perbandingan berpasangan setiap alternatif, dapat ditentukan prioritas alternatif menggunakan *Pairwise Comparison Matrix* melalui Excel. Data dianggap valid dan dapat diterima jika *consistency* menunjukkan angka di bawah 10% dan nilai AHP di bawah 0,1. Selanjutnya akan diambil tiga alternatif dengan nilai AHP tertinggi yang diasumsikan sebagai alternatif terbaik untuk mencapai tujuan penguatan *value chain* untuk mendukung hilirisasi pertanian kopi.

Tabel 8: Nilai AHP Alternatif

Alternatif	Nilai AHP (%)	Consistency Check (%)	Ranking
Penguatan Koperasi Petani dengan Sistem Informasi Terintegrasi	0,064	5	V
Pelatihan dan Sertifikasi Budidaya GAP	0,099	5	ı
Fasilitas Akses ke Pasar Langsung dan <i>E-commerce</i>	0,084	5	III

Alternatif	Nilai AHP (%)	Consistency Check (%)	Ranking
Penyediaan dan Pengembangan Infrastruktur Pengo- lahan Kopi	0,065	5	IV
Peningkatan Pelatihan Teknis kepada Kelompok Tani Secara Merata	0,053	5	VI
Himbauan untuk Menggunakan Kopi Lokal di Setiap Instansi	0,086	5	II
Peningkatan Kapasitas Kelembagaan Pertanian di Kelompok Tani	0,045	5	VII

Berdasarkan Tabel 8, dapat diketahui tiga urutan tertinggi strategi alternatif prioritas pertama adalah pelatihan dan sertifikasi budidaya GAP dengan nilai 0,099; selanjutnya alternatif himbauan untuk menggunakan kopi lokal di setiap instansi dengan nilai 0,086; dan alternatif urutan ketiga yaitu fasilitas akses ke pasar langsung dan *e-commerce* dengan nilai 0,084. Adapun penjelasan ketiga strategi alternatif prioritas dijabarkan sebagai berikut:

1) Pelatihan dan Sertifikasi Budidaya GAP

Kopi merupakan salah satu komoditas unggulan di Jawa Timur, dengan daerah seperti Bondowoso, Jember, dan Banyuwangi yang dikenal sebagai pusat produksi kopi. Menurut data BPS Jawa Timur (2022), produksi perkebunan kopi di Provinsi jawa Timur tahun 2022 mencapai 68.916. Namun, produktivitas dan kualitas kopi yang dihasilkan masih bervariasi dan sering kali tidak memenuhi standar internasional.

Pelatihan dan sertifikasi budidaya Good Agricultural Practices (GAP) merupakan strategi utama untuk meningkatkan kualitas dan produktivitas kopi di Jawa Timur. Pelatihan ini mencakup berbagai aspek, seperti pengelolaan lahan, penggunaan pupuk, pengendalian hama, serta teknik panen dan pasca-panen yang tepat. Implementasi GAP bertujuan untuk memastikan bahwa praktik-praktik pertanian yang digunakan tidak hanya efisien dan produktif, tetapi juga ramah lingkungan dan berkelanjutan yang selaras dengan konsep green economy. Strategi ini dapat diimplementasikan dengan cara bekerja sama dengan lembaga pelatihan dan sertifikasi yang memiliki pengalaman dalam bidang pertanian, seperti lembaga pemerintah, LSM, dan universitas, menyusun kurikulum pelatihan yang komprehensif mencakup semua aspek GAP, serta mengadakan program pelatihan secara berkala di daerah-daerah produksi kopi di Jawa Timur. Dengan pelatihan dan sertifikasi GAP, petani kopi di Jawa Timur dapat meningkatkan praktik pertanian mereka, sehingga mampu meningkatkan kualitas kopi yang dihasilkan untuk memenuhi standar internasional, meningkatkan produktivitas lahan dan hasil panen, mengurangi dampak negatif terhadap lingkungan, dan memperoleh sertifikasi yang dapat meningkatkan daya saing di pasar global. Penelitian ini sejalan dengan Romona dkk. (2024) dan Lestari (2023), yang menegaskan bahwa penerapan GAP mampu meningkatkan produktivitas serta memastikan standar mutu kopi di pasar internasional. Namun, sebagaimana dicatat Putra dkk. (2021), keberhasilan GAP memerlukan dukungan kelembagaan dan akses modal, yang menjadi tantangan tersendiri di tingkat petani Jawa Timur.

2) Himbauan untuk Menggunakan Kopi Lokal di Setiap Instansi

Provinsi Jawa Timur dikenal memiliki potensi besar dalam produksi kopi, namun di pasar lokal sering kali didominasi oleh kopi impor atau kopi dari daerah lain. Dengan meningkatkan konsumsi kopi lokal di instansi-instansi, seperti perhotelan, pariwisata, dan perkantoran, permintaan domestik terhadap kopi lokal dapat meningkat, memberikan keuntungan ekonomi langsung kepada petani kopi di Jawa Timur. Himbauan untuk menggunakan kopi lokal di setiap

Fiba, I. R., & Salsabila, R. A.

instansi bertujuan untuk meningkatkan permintaan terhadap kopi yang diproduksi oleh petani lokal. Kebijakan ini juga mendukung *green economy* melalui pengurangan emisi dari distribusi jarak jauh.

Strategi ini melibatkan pemerintah daerah dan instansi swasta untuk menggunakan kopi lokal dalam kegiatan operasional mereka, seperti rapat, acara, dan penyediaan kopi di kantin. Untuk menerapkan strategi ini, dibutuhkan peran pemerintah daerah untuk mengeluarkan kebijakan dan himbauan resmi yang mendorong penggunaan kopi lokal di instansi pemerintah dan swasta, serta bekerja sama dengan berbagai instansi dan perusahaan untuk memastikan ketersediaan kopi lokal di kantor dan acara mereka. Adanya himbauan ini diharapkan mampu meningkatkan penjualan kopi lokal dan pendapatan petani, mendukung pertumbuhan ekonomi daerah, dan meningkatkan kesadaran masyarakat dan instansi tentang pentingnya mendukung produk lokal. Penelitian ini mendukung hasil Anwar, A. F. (2022) serta Sutrisno dkk. (2025) yang menekankan pentingnya kebijakan daerah untuk meningkatkan permintaan domestik. Strategi ini juga konsisten dengan Ditahardiyani dkk. (2023) yang menekankan pentingnya kampanye dan *branding* produk kopi lokal.

3) Fasilitas Akses ke Pasar Langsung dan *E-commerce*

Banyak petani kopi di Jawa Timur masih bergantung pada pengepul untuk menjual produk mereka, yang sering kali mengakibatkan harga jual yang rendah. Dengan memanfaatkan *e-commerce*, petani dapat mengakses pasar yang lebih luas, baik di tingkat nasional maupun internasional. Strategi ini dapat diimplementasikan dengan cara memberikan pelatihan cara mengelola *platform e-commerce* agar memudahkan petani untuk mendaftarkan dan menjual produk mereka secara langsung kepada konsumen tanpa perantara.

Penyediaan fasilitas akses ke pasar langsung dan e-commerce bertujuan untuk membuka saluran pemasaran yang lebih luas bagi petani kopi. Melalui platform e-commerce, petani dapat menjual produk mereka langsung kepada konsumen, yang dapat meningkatkan margin keuntungan. Strategi ini bermanfaat untuk meningkatkan harga jual kopi dengan mengurangi peran perantara, memperluas jangkauan pasar dan meningkatkan penjualan, memberikan informasi pasar yang lebih transparan dan akurat kepada petani, serta mendorong inovasi dan diversifikasi produk kopi lokal. Strategi ini tidak hanya memperluas daya saing produk kopi lokal, tetapi juga mendukung prinsip green economy melalui efisiensi distribusi, pengurangan biaya logistik, dan pemanfaatan teknologi ramah lingkungan. Penelitian ini mendukung temuan Veratiani (2024), Yuanto dkk. (2024), dan Yeniarti (2024) mengenai efektivitas digitalisasi pemasaran dalam meningkatkan margin keuntungan dan memperluas pasar.

Kesimpulan

Penelitian ini menunjukkan bahwa hilirisasi kopi di Provinsi Jawa Timur mampu meningkatkan value added secara signifikan, dengan persentase peningkatan tertinggi terjadi di Kabupaten Banyuwangi (50% menjadi 95%), diikuti Bondowoso (69% menjadi 92%) dan Jember (92% menjadi 93%). Analisis keberlanjutan dengan metode Rapfish MDS menunjukkan bahwa dimensi ekonomi (55,80), sosial (57,90), dan ekologi (60,29) berada pada kategori cukup berkelanjutan. Melalui pendekatan AHP, diperoleh tiga strategi prioritas yang relevan untuk mendukung penguatan *green economy* dalam hilirisasi kopi, yaitu: (i) pelatihan dan sertifikasi budidaya GAP, (ii) regulasi daerah yang mendorong penggunaan kopi lokal di setiap instansi, dan (iii) dukungan akses pasar melalui *e-commerce*.

Kontribusi penelitian ini adalah memberikan dasar empiris bagi penguatan value chain

kopi di Jawa Timur, serta menawarkan strategi yang dapat mendukung daya saing kopi lokal di pasar domestik maupun global. Selain itu, penelitian ini menegaskan peran hilirisasi sebagai instrumen kunci dalam mendukung agenda *green economy* di sektor pertanian. Namun, penelitian ini memiliki keterbatasan karena hanya berfokus pada perumusan alternatif strategi dan belum mengkaji aspek kelayakan finansial, teknis, maupun tantangan implementasi di tingkat petani dan kelembagaan lokal.

Oleh karena itu, rekomendasi kebijakan yang spesifik adalah (1) Pemerintah daerah perlu menyusun program pelatihan GAP berbasis kolaborasi dengan universitas dan lembaga riset untuk meningkatkan kualitas produksi kopi; (2) Diperlukan regulasi daerah yang mewajibkan penggunaan kopi lokal di instansi pemerintahan dan mendorong sektor swasta untuk melakukan hal yang sama; (3) Dukungan terhadap digitalisasi pemasaran melalui platform e-commerce harus diperkuat dengan pelatihan literasi digital bagi petani dan kelompok tani. Langkah nyata yang dapat dilakukan adalah pengalokasian anggaran daerah untuk pelatihan GAP, penerbitan peraturan gubernur/bupati terkait penggunaan kopi lokal, serta fasilitasi kerja sama antara kelompok tani dengan platform e-commerce.

Dengan langkah-langkah tersebut, hilirisasi kopi di Jawa Timur diharapkan dapat memberikan nilai tambah ekonomi yang lebih besar, meningkatkan kesejahteraan petani, serta menjaga keberlanjutan lingkungan dalam kerangka *green economy*.

Daftar Pustaka

- Adiga, M. S., Ananthan, P. S., Kumari, H. D., & Ramasubramanian, V. (2016). Multidimensional analysis of marine fishery resources of Maharashtra, India. *Ocean & Coastal Management*, 130(1), 13-20. http://dx.doi.org/10.1016/j.ocecoaman.2016.05.008
- Andri, B. K. (2023). *Kiprah Indonesia di Panggung Kopi Global di Era Specialty Coffee*. Investing. com. https://id.investing.com/analysis/kiprah-indonesia-di-panggung-kopi-global-di-era-specialty-coffee-200248978
- Anisa, N. (2023). Kinerja Ekspor Kopi Jawa Timur di Januari-Agustus Alami Penurunan, Ini Penyebabnya. Jawa Pos. https://radarsurabaya.jawapos.com/ekonomi/773211285/kinerja-ekspor-kopi-jawa-timur-di-januari-agustus-alami-penurunan-ini-penyebabnya
- Anwar, A. F. (2022). Pengaruh pertumbuhan komoditas unggulan, layanan jasa perdagangan dan kelembagaan lokal di Kabupaten Luwu terhadap pengembangan ekonomi kawasan pedesaan (Disertasi doktoral). Institut Agama Islam Negeri Palopo.
- Anwar, M. (2022). *Green economy* sebagai strategi dalam menangani masalah ekonomi dan multilateral. *Jurnal Pajak dan Keuangan Negara (PKN)*, *4*(1S), 343–356.
- Alvarez, C. G., Rosero, G., & Brümmer, B. (2024). Do sustainable agricultural practices boost production and technical efficiency? A case study of coffee smallholders in Peru. *Agribusiness*. https://doi.org/10.1002/agr.22005
- Aoki, K., & Akai, K. (2023). A comparison between Spain and Japan with respect to the color, expected taste scale, and sustainability of strawberries: A choice experiment. *Food Quality and Preference*, 103, 104671. https://doi.org/10.1016/j.foodqual.2022.104671
- Bermudez, S., Voora, V., & Larrea, C. (2022). *Coffee prices and sustainability*. International Institute for Sustainable Development
- BPS. (2021). Statistik kopi Indonesia 2021. Badan Pusat Statistik.

- Fiba, I. R., &
- BPS Jawa Timur. (2022). Produksi perkebunan karet dan kopi menurut kabupaten/kota dan jenis tanaman di Provinsi Jawa Timur (Ton), 2021 dan 2022. BPS Jawa Timur. https:// jatim.bps.go.id/statictable/2023/03/21/2601/produksi-perkebunan-karet-dankopi-menurut-kabupaten-kota-dan-jenis-tanaman-di-provinsi-jawa-timur-ton-2021dan-2022.html
- Deddy, M. A., Adriyanto, A., & Andreas, R. D. (2023). Strategi hilirisasi di Indonesia dalam menghadapi kebijakan larangan ekspor bijih nikel terhadap tingkat pengangguran dan cadangan devisa negara. JISIP (Jurnal Ilmu Sosial dan Pendidikan), 7(3), 2026-2032
- Disperindag Jawa Timur. (2021). Geliat tumbuhnya industri olahan kopi di Jawa Timur. Disperindag Jawa Timur. https://disperindag.jatimprov.go.id/post/ detail?content=geliat-tumbuhnya-industri-olahan-kopi-di-jawa-timur
- Ditahardiyani, P., Hartoni, H., & Aulia, R. (2023). Perumusan strategi pemasaran hijau kerajinan rotan untuk meningkatkan kepuasan dan loyalitas konsumen. Jurnal Ilmiah Agribisnis (JIA): Jurnal Agribisnis dan Ilmu Sosial Ekonomi Pertanian, 8(5), 362–373. https://doi. org/10.29244/jai.2023.11.1.1-16
- Ditjen Perkebunan. (2023). Data perkebunan Indonesia [Diolah oleh Pusdatin, Kementerian Pertanian]. Kementerian Pertanian Republik Indonesia.
- Dwikorawati, S. S. (2012). Model kebijakan pengelolaan pariwisata yang berdaya saing dan berkelanjutan di kawasan puncak Kabupaten Bogor. Institut Pertanian Bogor.
- Effendi, M., Sitorus, A., Astuti, R., & Santoso, I. (2021). Malang coffee value chain analysis: A case study of Taji arabica coffee. IOP Conference Series: Earth and Environmental Science, 733(1), 012063.
- Eunike, A., Hardiningtyas, D., & Sari, S. I. K. (2018). Sustainability analysis of beach and mangrove tourism in Clungup, Malang Regency of East Java. ECSOFiM (Economic and Social of Fisheries and Marine Journal), 6(1), 1-13. https://doi.org/10.21776/ ub.ecsofim.2018.006.01.01
- Fajar, A., Fariyanti, A., & Priatna, W. B. (2023). Status keberlanjutan perkebunan kopi bersertifikasi CAFE Practices. Jurnal Agribisnis Indonesia (Journal of Indonesian Agribusiness), 11(1), 1-16.
- Fauzi, A. (2005). Permodelan Sumber Daya Perikanan dan Kelautan. Jakarta: PT. Gramedia Pustaka Utama
- Gunawan, G., & Rahmawati, R. (2024). Penerapan konsep green economy untuk meningkatkan nilai ekonomi ternak sapi Desa Sekrak Kiri, Aceh Tamiang. Jurnal Vokasi, 8(1), 1-9. http://dx.doi.org/10.30811/vokasi.v8i1.4646
- Hasanah, N., Berliana, D., & Fitriani, F. (2022). Analisis keuntungan dan value added pengolahan biji kopi menjadi kopi bubuk di Kecamatan Way Tenong, Kabupaten Lampung Barat. Prosiding Seminar Nasional Pembangunan dan Pendidikan Vokasi Pertanian, 3(1), 678-686. https://doi.org/10.47687/snppvp.v3i1.346
- Hasni, D., Yusriana, Y., & Aladdin, A. (2022). Analisis value added pada rantai pasok produk kopi arabika dengan metode Hayami (studi kasus di Kabupaten Aceh Tengah). Agrointek: Jurnal Teknologi Industri Pertanian, 16(4), 553-565. https://doi.org/10.21107/ agrointek.v16i4.13104

- Hayami, Y., Kawagoe, T., Morooka, Y., & Siregar, M. (1987). *Agricultural marketing and processing in upland Java: A perspective from a Sunda village*. The CGPRT Centre.
- Hidayat, S., & Suryani, M. A. (2012). Modification of Hayami's value-added method for the palm oil agroindustri supply chain. *Jurnal Teknologi Industri Pertanian*, 22(1).
- Idsan, R. S., & Andanu, O. (2025). Analisis *value added* agroindustri pengolahan kopi robusta (studi kasus: Kelio Coffee di Desa Bandung Batu Kecamatan Kabawetan Kabupaten Kepahiang). *Jurnal Rekayasa dan Manajemen Agroindustri*, 13(2), 281–292. https://doi.org/10.24843/JRMA.2025.v13.i02.p12
- Irawan, J., Santoso, I., & Mustaniroh. (2017). Model analisis dan strategi mitigasi risiko produksi keripik tempe. *Jurnal Teknologi dan Manajemen Agroindustri*, *6*(2), 88–96. https://doi.org/10.21776/ub.industria.2017.006.02.5
- Ismail, A. Y., Nainggolan, M. F., Andayani, S. A., & Isyanto, A. Y. (2024). Sustainable rice farming in Indonesia. *African Journal of Food, Agriculture, Nutrition and Development*, 24(1), 25409–25425. https://doi.org/10.18697/ajfand.127.23490
- Kemendag RI. (2023). Diminati di Amerika Serikat, Kopi Specialty Indonesia Cetak Transaksi USD 20,6 Juta di Specialty Coffee Expo 2023. https://www.kemendag.go.id/public/news/uVvopu4GWsV60Fyj2HbgA56Ehor8JJi5W6qUm6pq.pdf
- Lada, T. H. S., Djamali, A., & Subagja, H. (2021). Strategi pengembangan pemasaran agroindustri kopi robusta Gapoktanhutbun "Maju Mapan" Kecamatan Panti Kabupaten Jember. JASc (Journal of Agribusiness Sciences), 4(2), 88–93. https://doi.org/10.30596/jasc. v4i2.6862
- Lestari, A. (2023). *Analisis pengembangan ekspor biji pala Indonesia* (Skripsi sarjana). UIN Syarif Hidayatullah Jakarta.
- Lihawa, A., Uloli, H., & Rasyid, A. (2021). Analisis *value chain* (*value chain*) pada komoditas jagung. *Jambura Industrial Review (JIREV)*, 1(2), 94–103. https://doi.org/10.37905/jirev.v1i2.11843
- Moktadir, M. A., Ali, S. M., Rajesh, R., & Paul, S. K. (2018). Modeling the interrelationships among barriers to sustainable supply chain management in tanneries. *Journal of Cleaner Production*, 181, 631–641. https://doi.org/10.1016/j.jclepro.2018.01.245
- Novita, E., Suryaningrat, I. B., Andriyani, I., & Widyotomo, S. (2012). Analisis keberlanjutan kawasan usaha perkebunan kopi (KUPK) rakyat di Desa Sidomulyo Kabupaten Jember. *Jurnal Agritech*, 32(2). https://doi.org/10.22146/agritech.9621
- Nugraha, D. F., Son, D. H., Wardani, R. P., Lee, S. W., Whang, D. R., Kim, J. H., & Chang, D. W. (2022). Strategic structural evolution for enhancing the photovoltaic performance of quinoxaline-based polymers. *Journal of Industrial and Engineering Chemistry*, 114, 331-337. https://doi.org/10.1016/j.jiec.2022.07.023
- Porter, M. E. (1985). *Competitive advantage: Creating and sustaining superior performance.*New York: Free Press.
- Purbantara, A., Rahmawati, E., Fabiany, V., & Sukarno, T. D. (2022). Strategi penguatan identitas kopi Desa Ciater, Kabupaten Subang. *Jurnal Ilmiah Membangun Desa dan Pertanian (JIMDO)*, 7(2), 33–42. https://doi.org/10.37149/jimdp.v7i2.23988

- Fiba, I. R., &
- Putra, S. I., Istigomah, I., Gunawan, D. S., & Purnomo, S. D. (2020). Analisis pendapatan dan value added industri pengolahan kopi: Pendekatan metode Hayami. Efficient: *Indonesian Journal of Development Economics*, 3(3), 994–1005.
- Ramadhantya, N. R., Setiawan, J. F., Rudiyanto, W., Kristijarso, S. A., Putra, A., & Arisandi, P. (2022). Rapfish analysis (Rapid Appraisal for Fisheries) for sustainability of lobster (Panulirus sp.) in Coastal Cilacap with a blue economy approach. ASRJETS, 85, 41–59.
- Romona, F. R. T., Suyatno, A., & Hutajulu, J. P. (2024). Strategi Pengembangan Sistem Agribisnis Lada (Piper Nigrum Linn) Di Kecamatan Entikong Kabupaten Sanggau. Jurnal Borneo Akcaya, 10(2), 235-252. https://doi.org/10.51266/jba.v10i2.396
- Saaty, T. L., & Vargas, L. G. (2012). How to make a decision. International Series in Operations Research & Management Science.
- Saragih, I. K., Rachmina, D., & Krisnamurthi, B. (2020). Analisis status keberlanjutan perkebunan kelapa sawit rakyat Provinsi Jambi. Jurnal Agribisnis Indonesia, 8(1), 17-29. https:// doi.org/10.29244/jai.2020.8.1.17-32
- Sasongko, N. A., Suryanti, R., Haryanto, Y., & Haruna, N. (2023). Inovasi Penerapan Dan Faktor Pendukung Agribisnis Hortikultura: Implementation Innovation And Supporting Factors Horticulture Agribusiness. Jurnal Penyuluhan, 19(02), 346-355. https://doi. org/10.25015/19202347912
- Sidiq, I. S. H., Purnomo, B. H., Suwasono, S., & Soemarno, D. (2024). Strategi pengembangan agroindustri kopi robusta kelompok tani sumber kembang di Kabupaten Jember. Jurnal Teknologi Industri Pertanian, 18(2), 381–392. Agrointek: org/10.21107/agrointek.v18i2.10552
- Singh, A., Agarwal, P., Dixit, S., Singh, S., & Sahai, S. (2018). The transition towards sustainable supply chain management: An empirical study. MATEC Web of Conferences, 172, 05001. EDP Sciences. https://doi.org/10.1051/matecconf/201817205001
- Sriwana, I. K., Santosa, B., Tripiawan, W., & Maulanisa, N. F. (2022). Analisis value added untuk meningkatkan keberlanjutan rantai pasok agroindustri kopi menggunakan Hayami. JISI: Jurnal Integrasi Sistem Industri, 9(2), 113–122. https://doi.org/10.24853/jisi.9.2.113-122
- Suhardjo, I., Meiliana, M., Fransiska, F., Lee, A., & Gary, G. (2024). Pengaruh latar belakang pendidikan direksi dan struktur kepemilikan terhadap pengungkapan keberlanjutan pada perusahaan agrikultur Indonesia: Peran hilirisasi dan sertifikasi sebagai variabel moderasi. Ekonomis: Journal of Economics and Business, 8(2), 1798–1807. http:// dx.doi.org/10.33087/ekonomis.v8i2.1664
- Suherman, R. F., Hikmah, S. Q., & Firmansyah, R. (2023). Analisis faktor-faktor yang mempengaruhi ekspor kopi Indonesia di pasar internasional. JAMeS: Jurnal Ekonomi Manajemen dan Sosial, 6(2), 51–61.
- Sukmawati, W., Suparno, O., & Hermawan, A. (2020). Keberlanjutan rantai pasok industri kecil dan menengah (IKM) alas kaki di Kabupaten dan Kota Bogor. Jurnal Teknologi Industri Pertanian, 30(1). https://doi.org/10.24961/j.tek.ind.pert.2020.30.1.43
- Susanty, A., Purwaningsih, R., Puspitasari, N. B., Siregar, A. R. R., & Arista, A. N. (2020). Sustainable supply chain management: Pengukuran tingkat keberlanjutan pada rantai

- pasok pangan. Semarang: Penerbit Fastindo.
- Sutrisno, E., Kusmiati, K., & Alfatih, M. (2025). Strategi prioritas pengembangan usaha penggemukan sapi potong di Kota Tanjungpinang dengan menggunakan metode Analytical Hierarchy Process (AHP). *JIA: Jurnal Ilmiah Agribisnis*, 10(2), 119–131. https://doi.org/10.37149/jia.v10i2.1786
- Syamil, A., Subawa, S., Budaya, I., Munizu, M., Darmayanti, N. L., Fahmi, M. A., ... & Dulame, I. M. (2023). *Manajemen Rantai Pasok*. Jambi: PT. Sonpedia Publishing Indonesia.
- Syaukat, Y. (2024). Prospek Implementasi Model Bioekonomi dalam Hilirisasi Produk Pertanian di Indonesia. In B. Martawardaya & I. A. F. Adha (Eds.), *Akselerasi Menuju Ekonomi Indonesia yang Hijau, Inklusif, dan Unggul* (pp. 88-98). Jakarta: INDEF
- Tesfamichael, D., & Pitcher, T. J. (2006). Multidisciplinary evaluation of the sustainability of Red Sea fisheries using Rapfish. *Fisheries Research*, 78(2–3), 227–235. https://doi.org/10.1016/j.fishres.2006.01.005
- Toubes, D. R., & Araújo-Vila, N. (2022). A review research on tourism in the *green economy*. *Economies*, 10(6), 137. https://doi.org/10.3390/economies10060137
- Veratiani, G. A. (2024). Analisis proyeksi masa depan dan alternatif kebijakan digital farming. Governance: Jurnal Ilmiah Kajian Politik Lokal dan Pembangunan, 11(2), 279–287.
- Wahyudi, I. (2009). Serapan N tanaman jagung (Zea mays L.) akibat pemberian pupuk guano dan pupuk hijau lamtoro pada Ultisol Wanga. *Agroland: Jurnal Ilmu-Ilmu Pertanian*, 16(4).
- Wibowo, Y., & Palupi, C. B. (2022). Analisis *value added* pengolahan biji kopi arabika (studi kasus: Rumah Kopi Banjarsengon, Jember). *Jurnal Agroteknologi*, 16(1), 37-48. https://doi.org/10.19184/j-agt.v16i01.28209
- Xue, Z., Li, J., & Cao, G. (2022). Training and self-learning: How to improve farmers' willingness to adopt farmland conservation technology? Evidence from Jiangsu Province of China. *Land*, *11*(12), 2230. https://doi.org/10.3390/land11122230
- Yeniarti, T. B. (n.d.). Analisis strategi pemasaran kebab (studi kasus CV Indo Berkah Mandiri Sejahtera, Bintara, Kota Bekasi, Jawa Barat) (Skripsi sarjana). UIN Syarif Hidayatullah Jakarta.
- Yuanto, E. N., Raharja, S., & Aminah, M. (2024). Strategi pengembangan dan analisis kelayakan usaha pada PT XYZ (Studi kasus: Tenant Badan Riset Inovasi Nasional). *Manajemen IKM: Jurnal Manajemen Pengembangan Industri Kecil Menengah*, 19(2), 129–137. https://doi.org/10.29244/mikm.19.2.127-135
- Yusuf, E. S., Fahmi, I., & Indrawan, R. D. (2022). Strategi keberlanjutan dan model bisnis kopi arabika di Jawa Barat: Studi kasus di Kabupaten Garut. *Analisis Kebijakan Pertanian*, 20(1), 73–94. https://doi.org/10.21082/akp.v20i1.73-94