INEQUALITY OF HOUSEHOLD EXPENDITURE AND MAPPING POTENTIAL SOCIAL ECONOMIC VULNERABILITIES IN EAST JAVA PROVINCE IN 2018

  • Yusi Krismaningtyas Badan Pusat Statistika
  • Taly Purwa Badan Pusat Statistika
Keywords: Ketimpangan, Indeks Theil, Potensi Kerawanan Sosial Ekonomi, K-Means, Clustering

Abstract

Ketimpangan yang melebar di Jawa Timur tergambar dari semakin menjauhnya capaian gini ratio Tahun 2014-2018 dari target yang dituangkan dalam Rencana Pembangunan Jangka Menengah Daerah (RPJMD) Jawa
Timur. Studi ini mencoba mendekomposisikan Indeks Theil berdasarkan dimensi sosial, ekonomi dan spasial dengan menggunakan data mikro rumah tangga hasil Survei Sosial Ekonomi Nasional (Susenas) Maret 2018 serta memetakan potensi kerawanan sosial ekonomi yang dapat timbul akibat melebarnya ketimpangan tersebut pada level kabupaten/kota di Provinsi Jawa Timur menggunakan data hasil pendataan Potensi Desa (Podes) 2018 dan Provinsi Jawa Timur Dalam Angka Tahun 2019. Ketimpangan  pengeluaran rumah tangga yang terjadi dalam kelompok (within group) hasil dekomposisi memberikan kontribusi dominan terhadap ketimpangan pengeluaran rumah tangga di Provinsi Jawa Timur. Analisis Kluster dengan metode K-means mengelompokkan kabupaten/kota menjadi empat kluster. Hasil pemetaan potensi kerawanan sosial ekonomi tersebut dapat dijadikan alternatif Pemerintah Provinsi Jawa Timur dalam menentukan prioritas kebijakan penanganan ketimpangan pengeluaran rumah tangga di Provinsi Jawa Timur sesuai dengan karakteristik spesifik masing-masing kabupaten/kota.
JEL classification: B55, D12, D63, E21, P25

References

Adger, W. N. (1999). Social vulnerability to climate change and extremes in coastal Vietnam. World Development, 27(2), 249–269. https://doi.org/https://doi.org/10.1016/S0305-750X(98)00136-3

Akita, Takahiro; Lukman, Rizal Affandi; Yamada, Y. (1999). Inequality in the distribution of household expenditures in indonesia: a theil decomposition analysis. The Developing Economics, 2(June), 197–221.

Anand, S. (1983). Inequality and Poverty in Malaysia: Measurement and Decomposition. In World Bank Research Publication. New York.

Anwar, A. (2017). Ketimpangan Spasial Pembangunan Ekonomi dan Modal Manusia di Pulau Jawa: Pendekatan Explatory SPatial Data Analysis. AJIE - Asian Journal of Innovation and Entrepreneurship, 02(02), 90–109.

Arsyad, L. (2010). Ekonomi Pembangunan (5th ed.). Yogyakarta: UPP STIM YKPN.

Bourguignon, F. (2004). The Poverty-Growth-Inequality Triangle. Indian Council for Research on International Economic Relations.

Bui, T. P., & Imai, K. S. (2018). Determinants of Rural-Urban Inequality in Vietnam: Detailed Decomposition Alaysis Based on Unconditional Quantile Regressions. The Journal of Development Studies, 1–16. https://doi.org/https://doi.org/10.1080/00220388.2018.1536265

Camp-Valls, G., Rojo-Alvarez, J. L., & Martinez-Ramon, M. (2007). Kernel Methods in Bioengineering, Signal and Image. USA: Idea Group Publishing.

Chakraborty, L., Rus, H., Henstra, D., Thistlethwaite, J., & Scott, D. (2019). A place_based socioeconomic status index: Measuring social vulnerability to flood hazards in the context of environmental justice. International Journal of Disaster Risk Reduction. https://doi.org/doi.org/10.1016/j.ijdrr.2019.101394

Chatterjee, A., Chakrabarti, A. S., Ghosh, A., Chakraborti, A., & Nandi, T. K. (2016). Invariant Features of Spatial Inequality in Consumption: The Case of India. Physica A, 442, 169–181. https://doi.org/http://doi.org/10.1016/j.physa.2015.09.019

Ciurean, R. L., Schröter, D., & Glade, T. (2013). Conceptual Frameworks of Vulnerability Assessments for Natural Disasters Reduction. In Approaches to Disaster Management - Examining the Implications of Hazards, Emergencies and Disasters. Retrieved from https://www.intechopen.com/chapters/42656

Fields, G. S. (2001). Distribution and Development. Cambridge: MIT Press.

Fussel, H.-M. (2010). How inequitable is global distribution of responsibility, capability, and vulnerability to climate change: A comprehensive indicator-based assessment. Global Environmental Change, 20, 597–611. https://doi.org/doi:10.1016/j.gloenvcha.2010.07.009

Ge, Y., Yang, G., Chen, Y., & Dou, W. (2019). Examining Social Vulnerability and Inequality: A Joint Analysis through a Connectivity Lens in the Urban Agglomerations of China. Sustainability, 11, 1042. https://doi.org/doi:10.3390/su11041042

Gunalatika, R., & Chotikapanich, D. (2009). Accounting for Sri Lanka’s Expenditure Inequality 1980-2002: Regression-Based Decomposition Approaches. Review in Income and Wealth, 55(4), 882–906.

Hayashi, M., Kataoka, M., & Akita, T. (2014). Expenditure Inequality in Indonesia , 2008 – 2010 : A Spatial Decomposition Analysis and the Role of Education *. Asian Economic Journal, 28(4), 389–411.

Human Development Report. (2014). Sustaining Human Progress: Reducing Vulnerabilities and Building Resilence. New York.

Iswanto, D. (2015). KETIMPANGAN PENDAPATAN ANTAR KABUPATEN/KOTA dan PERTUMBUHAN EKONOMI di PROPINSI JAWA TIMUR. Signifikan: Jurnal Ilmu Ekonomi, 4(1), 41–66. https://doi.org/10.15408/sjie.v4i1.2293

Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. https://doi.org/DOI:10.1002/978047031680

Ketchen, D. J., & Shook, C. L. (1996). The apllication of cluster analysis in strategic management research: an analysis and critique. Strategic Management Journal, 17(6), 441–458. Retrieved from https://www.jstor.org/stable/2486927

Kuznets, S. (1955). Economic Growth and Income Inequality. The American Economic Review, 45(1), 1–28.

Llorente-Marrón, M., Llorente-Marrón, M., Méndez-Rodríguez, P., & Arias, R. G. (2020). Social Vulnerability, Gender and Disasters. The Case of Haiti in 2010. Sustainability (Switzerland), 12(3574), 1–21. https://doi.org/doi:10.3390/su12093574

Nainggolan, R. N., Perangin-angin, R., Simarmata, E., & Tarigan, F. A. (2019). Improved the Performance of the K-Means Cluster Using the Sum of Squared Error (SSE) optimized by using the Elbow Method. Journal of Physics: Conference Series, 1361, 1–6. https://doi.org/Journal of Physics: Conference Series

Nooraeni, R., Yudho, N. P., & Pramana, S. (2018). Mapping the socio-economic vulnerability in Aceh to reduce the risk of natural disaster Mapping the socio-economic vulnerability in Aceh to reduce the risk of natural disaster View online : https://doi.org/10.1063/1.5062736 View Table of Contents : http:/. The 8th Annual Basic Science International Conference, AIP Conf.(October), 1–7. https://doi.org/10.1063/1.5062736

Olaniyan, O., & Awoyemi, T. T. (2005). Inequality in the Distribution of Household Expenditure in Rural Nigeria: A Decomposition Analysis. Retrieved from https://sarpn.org/documents/d0002271/Household-expenditure_Nigeria_Oct2005.pdf

Pemerintah Provinsi Jawa Timur. (2009). Perda No.1: Rencana Pembangunan Jangka Panjang Provinsi Jawa Timur Tahun 2005-2025. Surabaya: JDIH Biro Hukum Setda Provinsi Jawa Timur.

Raghu, B. (2020). The Impact of Vulnerability and Income distribution on Inequality and Poverty: Analysis of Flood and landslides in Vulnerable Locations of Nepal. MPRA, (98935), 1–17. Retrieved from https://mpra.ub.uni-muenchen.de/98935/

Rakauskiene, O. G., & Strunz, H. (2016). Approach to Reduction of Socioeconomic Inequality: Decrease of Vulnerability and Strengthening Resilence. Journal of Scientific Papers Economics & Sociology, 9(4), 243–258. https://doi.org/10.14254/2071-789X.2016/9-4/15

Rasch, R. (2015). Income Inequality And V Income Inequality And Vulnerabiility T abiility To Flood Hazar o Flood Hazard In Br d In Brazil. The City University of New York.

Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

Shi, C., Wei, B., Wei, S., Wang, W., Liu, H., & Liu, J. (2021). A quantitative discriminant method of elbow point for the optimal number of clusters in clustering algorithm. EURASIP Journal on Wireless Communications and Networking, 2021(31), 1–16. https://doi.org/https://doi.org/10.1186/s13638-021-01910-w

Shorrocks, A. (1980). The class of additively decomposable inequality measures. Econometrica, 48(3), 613–625.

Shutaywi, M., & Kachouie, N. N. (2021). Silhouette Analysis for Performance Evaluation in Machine Learning with Applications to Clustering. Entropy, 23(759), 1–17. https://doi.org/https://doi.org/10.3390/e23060759

Siagian, T. H., Purhadi, P., Suhartono, S., & Ritonga, H. (2014). Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Nat. Hazards, 70(2), 1603–1617.

Tadjoeddin, M. Z., Yumna, A., Gultom, S. E., Rakhmadi, M. F., Hidayat, M. F., & Suryahadi, A. (2016). Inequality and Stability in Democratic and Decentralized Indonesia. Retrieved from https://www.smeru.or.id/sites/default/files/publication/inequalitystability_eng_0.pdf

The World Bank. (2014). Reducing Inequality in Indonesia. Retrieved September 1, 2021, from https://www.worldbank.org/en/country/indonesia/brief/reducing-inequality-in-indonesia

Thorndike, R. L. (1953). Who belongs in the family? Psychometrika, 18(4), 267–276. https://doi.org/https://doi.org/10.1007/BF022 89263

Todaro, Michael P.; Smith, S. C. (2012). Economic Develompent (11th Editi). USA: Pearson.

Wahyuni, R. N., & Monika, A. K. (2016). The Impact of Education on Income Inequality Among Indonesian Workers. Jurnal Kependudukan Indonesia, 11(1), 15–28.

World Bank Institute. (2005). Introduction to Poverty Analysis. World Bank Institute.

Published
2019-03-30
How to Cite
Krismaningtyas, Y., & Purwa, T. (2019). INEQUALITY OF HOUSEHOLD EXPENDITURE AND MAPPING POTENTIAL SOCIAL ECONOMIC VULNERABILITIES IN EAST JAVA PROVINCE IN 2018. East Java Economic Journal, 3(1), 108-129. https://doi.org/10.53572/ejavec.v3i1.27
Section
Articles