Development of Green Economy Index (GEI) with Remote Sensing to Support Sustainable Economy in East Java

  • Wahidya Nurkarim Badan Pusat Statistik, Jakarta, Indonesia
Keywords: Green Economy Index (GEI), Economic Development, Remote Sensing

Abstract

The green economy concept is now widely used by many countries as a development concept that supports economic growth by ensuring that natural aspects are maintained. The green economy index (GEI) was formed to provide an evaluation of the achievements of the transformation of a greener economic development. The availability of Remote Sensing data has the potential to complement data that is not available at the regional level. This study builds the GEI Index in the province of East Java using indicators that have been studied literacy. The results obtained are that the green economy index in East Java has increased over the last five years. The city of Surabaya is the center of economic development which can be seen from many indicators. This indicates that spatial effects affect sustainable development that is environmentally friendly in East Java. Regional grouping analysis gives the result that there are groups that really need special attention because of the low scores on almost all indicators. Not only the regency government but also the policy from the East Java provincial government is needed to participate in developing this green economy practice.

References

Afira, N., & Wijayanto, A. W. (2022). Mono-temporal and multi-temporal approaches for burnt area detection using Sentinel-2 satellite imagery (a case study of Rokan Hilir Regency, Indonesia). Ecological Informatics, 69, 101677.

African Ministers. (2011). Africa Consensus Statement to Rio+20.

Ali, A., & Alam Nayyar, Z. (2021). A Modified Built-up Index (MBI) for automatic urban area extraction from Landsat 8 Imagery. Infrared Physics & Technology, 116, 103769. https://doi.org/10.1016/j.infrared.2021.103769

Alim, M. K., & Arianto, D. B. (2023). Analisis Korelasi Antara Faktor Ekonomi dan Distribusi Penduduk di Jawa Timur Tahun 2020 Menggunakan Metode Korelasi Pearson. Kohesi: Jurnal Sains dan Teknologi, 1(5), 20-30.

Ardiantoro, L., Muslimin, M., Zahara, S., Asmorowati, E. T., Putra, A. C., Sarasanti, D., & Rijanto, A. (2022). Penguatan Tata Kelola Sampah Terpadu Menuju Pembangunan Berkelanjutan Di TPA Randegan Kota Mojokerto. ABDIMAS NUSANTARA: Jurnal Pengabdian Kepada Masyarakat, 4(1), 22-27.

Arini, D. R., Purnawan, C., Rahayu, E. S., Utomowati, R., & Purnomo, N. A. (2022). Sumbangan Indeks Kualitas Udara Wilayah sebagai Bagian Pencapaian Sustainable Development Goals (Studi Kasus: Kabupaten Magetan). ENVIRO: Journal of Tropical Environmental Research, 24(2), 36-46.

Azizatun, B., Kubro, F. M. H., Regita, F. A., & Permatasari, N. D. (2021). Analisis Kinerja Pemerintah Desa dalam Pengelolaan Sampah di TPS Gedangan Kabupaten Sidoarjo. Jurnal Indonesia Sosial Teknologi, 2(06), 929-938.

BAPPENAS. (2022). Green Economy Index: A Step Forward to Measure the Progress of Low Carbon & Green Economy in Indonesia.

Bilgaev, A., Sadykova, E., Mikheeva, A., Bardakhanova, T., Ayusheeva, S., Li, F., & Dong, S. (2022). Green Economy Development Progress in the Republic of Buryatia (Russia). International Journal of Environmental Research and Public Health, 19(13), 7928. https://doi.org/10.3390/ijerph19137928

Chen, Z., Wei, Y., Shi, K., Zhao, Z., Wang, C., Wu, B., ... & Yu, B. (2022). The potential of nighttime light remote sensing data to evaluate the development of digital economy: A case study of China at the city level. Computers, Environment and Urban Systems, 92, 101749.

De Vries, J., Voors, R., Ording, B., Dingjan, J., Veefkind, P., Ludewig, A., Kleipool, Q., Hoogeveen, R., & Aben, I. (2016). TROPOMI on ESA’s Sentinel 5p ready for launch and use (K. Themistocleous, D. G. Hadjimitsis, S. Michaelides, & G. Papadavid, Eds.; p. 96880B). https://doi.org/10.1117/12.2240839

Firstanti, A. A., Afiuddin, A. E., & Ramadani, T. A. (2022). Pola Sebaran Emisi SO2, NO2, dan Partikulat dari Cerobong Batu Bara Industri Kecap Menggunakan Software Screen View. In Conference Proceeding on Waste Treatment Technology (Vol. 5, No. 1).

Gentle, J. E., Kaufman, L., & Rousseuw, P. J. (1991). Finding Groups in Data: An Introduction to Cluster Analysis. Biometrics, 47(2), 788. https://doi.org/10.2307/2532178

Hutasavi, S., & Chen, D. (2021). Estimating District-Level Electricity Consumption Using Remotely Sensed Data in Eastern Economic Corridor, Thailand. Remote Sensing, 13(22), 4654. https://doi.org/10.3390/rs13224654

Nahman, A., Mahumani, B. K., & De Lange, W. J. (2016). Beyond GDP: Towards a Green Economy Index. Development Southern Africa, 33(2), 215–233. https://doi.org/10.1080/0376835X.2015.1120649

Nurkarim, W., & Wijayanto, A. W. (2023). Building footprint extraction and counting on very high-resolution satellite imagery using object detection deep learning framework. Earth Science Informatics, 16(1), 515–532. https://doi.org/10.1007/s12145-022-00895-4

Purwanti, Y., & Dianzah, Y. E. N. (2023). Analisis Capaian Pembangunan Inklusif Hijau Pada Tingkat Kabupaten/Kota Di Jawa Timur dengan Balanced Inclussive Green Growth Index. Jurnal Akuntansi, Manajemen, Bisnis dan Teknologi, 3(2), 223-239.

Organization for Economic Cooperation and Development (OECD). (2011). Towards Green Growth. OECD. https://doi.org/10.1787/9789264111318-en

Putra, Y. C., & Wijayanto, A. W. (2023). Automatic detection and counting of oil palm trees using remote sensing and object-based deep learning. Remote Sensing Applications: Society and Environment, 29, 100914.

Putri, S. R., Wijayanto, A. W., & Sakti, A. D. (2022). Developing relative spatial poverty index using integrated remote sensing and geospatial big data approach: A case study of east java, Indonesia. ISPRS International Journal of Geo-Information, 11(5), 275.

Sakti, A. D., Rinasti, A. N., Agustina, E., Diastomo, H., Muhammad, F., Anna, Z., & Wikantika, K. (2021). Multi-scenario model of plastic waste accumulation potential in indonesia using integrated remote sensing, statistic and socio-demographic data. ISPRS International Journal of Geo-Information, 10(7), 481.

Salsabillah, A. P., Narindra, P. R., Rahardjo, N. A., & Afrianto, F. (2023). Tingkat Keseimbangan dan Klaster Ekonomi Hijau di Provinsi Jawa Timur. Pranatacara Bhumandala: Jurnal Riset Planologi, 4(2), 129-152.

Septian, A. D. (2023). Pengaruh Pertumbuhan Ekonomi Dan Upah Minimum Terhadap Kemiskinan Di Jombang Jawa Timur. J-Mabes: Jurnal Manajemen, Akuntansi, Bisnis dan Studi Ekonomi Syariah, 1(1), 1-6.

Septiani, I. Y., & Endang, E. (2022). Analisis Ketimpangan Pembangunan Ekonomi Di Provinsi Jawa Timur Tahun 2016-2020. Jurnal Ekonomi Manajemen dan Sosial, 5(1), 25-31.

Sholikhin, M. A. M. (2020). Dampak Industrialisasi dala Pertumbuhan Ekonomi Masyarakat Lokal Kecamatan Paciran Kabupaten Lamongan (Doctoral dissertation, Fakultas Ekonomi dan Bisnis Islam Jurusan Ekonomi Islam Program Studi Ekonomi Syariah).

Supriyadi, S. (2012). Kesuburan tanah di lahan kering Madura. 2, 124–131.

Syahid, L. N., Sakti, A. D., Virtriana, R., Wikantika, K., Windupranata, W., Tsuyuki, S., ... & Pribadi, R. (2020). Determining optimal location for mangrove planting using remote sensing and climate model projection in southeast asia. Remote Sensing, 12(22), 3734.

Todaro, Michael P, Smith, & Stephen C. (2011). Economic development: The developed and developing World. Boston, MA: Addison-Wesley.

United Nations Development Programme (UNDP). (2018). World Green Economy Report. https://www.undp.org/arab-states/publications/2018-world-green-economy-report

United Nations Environment Programme (UNEP). (2010). Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication. https://sustainabledevelopment.un.org/content/documents/126GER_synthesis_en.pdf

United Nations Environment Programme (UNEP). (2012). Measuring Progress Towards an Iclusive Green Economy. https://wedocs.unep.org/20.500.11822/32438

Vadrevu, K. P. (2013). Introduction to Remote Sensing (FIFTH EDITION). By J. B. Campbell and R. H. Wynne. Guilford Press, New York, USA, 2011. ISBN 978 160918 176 5. 297 mm × 210 mm, xxxii + 670 pages. Price US$95·00 hardback. The Photogrammetric Record, 28(141), 117–118. https://doi.org/10.1111/phor.12021

Van Buuren, S. (2018). Flexible imputation of missing data. CRC press. https://stefvanbuuren.name/fimd/sec-simplesolutions.html

Vîrghileanu, M., Săvulescu, I., Mihai, B.-A., Nistor, C., & Dobre, R. (2020). Nitrogen Dioxide (NO2) Pollution Monitoring with Sentinel-5P Satellite Imagery over Europe during the Coronavirus Pandemic Outbreak. Remote Sensing, 12(21), 3575. https://doi.org/10.3390/rs12213575

Virtriana, R., Riqqi, A., Anggraini, T. S., Fauzan, K. N., Ihsan, K. T. N., Mustika, F. C., ... & Wikantika, K. (2022). Development of spatial model for food security prediction using remote sensing data in west Java, Indonesia. ISPRS International Journal of Geo-Information, 11(5), 284.

Wijayanto, A. W., Afira, N., & Nurkarim, W. (2022, June). Machine learning approaches using satellite data for oil palm area detection in Pekanbaru City, Riau. In 2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom) (pp. 84-89). IEEE.

World Bank. (2012). Inclusive Green Growth: The Pathway to Sustainable Development. The World Bank. https://doi.org/10.1596/978-0-8213-9551-6

Yuan, C., & Yang, H. (2019). Research on K-Value Selection Method of K-Means Clustering Algorithm. J, 2(2), 226–235. https://doi.org/10.3390/j2020016

Zhao, F., Song, L., Peng, Z., Yang, J., Luan, G., Chu, C., ... & Xie, Z. (2021). Night-time light remote sensing mapping: Construction and analysis of ethnic minority development index. Remote Sensing, 13(11), 2129.

Published
2024-09-30
How to Cite
Nurkarim, W. (2024). Development of Green Economy Index (GEI) with Remote Sensing to Support Sustainable Economy in East Java. East Java Economic Journal, 8(2), 215-243. https://doi.org/10.53572/ejavec.v8i2.124
Section
Articles