East Java Province GRDP Projection Model Using Night-Time Light Imagery

  • Firman Afrianto PT. Sagamartha Ultima
Keywords: PDRB, Nighttime Light Imagery, Ekonomi Regional, Model Proyeksi

Abstract

Economic growth, regional development, and human activities are some of the things that are very strongly related and influence each other. Approaches to forecasting the growth of the three are mostly carried out using both conventional and non-conventional data. Utilization of Nighttime Light Imagery satellite imagery is included in a non-conventional approach to forecasting Gross Regional Domestic Product. This study applies the use of satellite imagery to predict the regional development of East Java Province, to find patterns of agglomeration and the formation of clusters of economic development in the future.

References

Bank Indonesia. (2022). Laporan Perekonomian Provinsi Jawa Timur Februari 2022.

BPS Provinsi Jawa Timur. (2022). Provinsi Jawa Timur Dalam Angka 2022.

Cao, J., Chen, Y., Wilson, J. P., Tan, H., Yang, J., & Xu, Z. (2020). Modeling China’s prefecture-level economy using VIIRS imagery and spatial methods. Remote Sensing, 12(5), 1–19. https://doi.org/10.3390/rs12050839

Cavalcante da Silva, G., Monteiro de Almeida, F., Oliveira, S., Wanner, E. F., Bezerra, L. C. T., Takahashi, R. H. C., & Lima, L. (2021). Comparing community mobility reduction between first and second COVID-19 waves. Transport Policy, 112(May), 114–124. https://doi.org/10.1016/j.tranpol.2021.08.004

Chen, X., & Nordhaus, W. D. (2011). Using luminosity data as a proxy for economic statistics. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8589–8594. https://doi.org/10.1073/pnas.1017031108

Elvidge, C D, Baugh, K. E., Kihn, E. A., Kroehl, H. W., Davis, E. R., & Davis, C. W. (1997). Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. International Journal of Remote Sensing, 18(6), 1373–1379. https://doi.org/10.1080/014311697218485

Elvidge, Christopher D., Baugh, K. E., Zhizhin, M., & Hsu, F.-C. (2013). Why VIIRS data are superior to DMSP for mapping nighttime lights. Proceedings of the Asia-Pacific Advanced Network, 35(0), 62. https://doi.org/10.7125/apan.35.7

Elvidge, Christopher D., Zhizhin, M., Ghosh, T., Hsu, F. C., & Taneja, J. (2021). Annual time series of global viirs nighttime lights derived from monthly averages: 2012 to 2019. Remote Sensing, 13(5), 1–14. https://doi.org/10.3390/rs13050922

Eppang, B. M., Som, A. P., Azinuddin, M., Rijal, S., & Ridwan, M. (2021). The Impact of the COVID-19 Pandemic on the Tourism Economy. 58, 155–176. https://doi.org/10.4018/978-1-7998-8231-2.ch008

Forbes, D. J. (2013). Multi-scale analysis of the relationship between economic statistics and DMSP-OLS night light images. GIScience and Remote Sensing, 50(5), 483–499. https://doi.org/10.1080/15481603.2013.823732

Gibson, J., & Boe-Gibson, G. (2021). Nighttime lights and county-level economic activity in the United States: 2001 to 2019. Remote Sensing, 13(14). https://doi.org/10.3390/rs13142741

Hillger, D., Kopp, T., Lee, T., Lindsey, D., Seaman, C., Miller, S., Solbrig, J., Kidder, S., Bachmeier, S., Jasmin, T., & Rink, T. (2013). First-light imagery from Suomi NPP VIIRS. Bulletin of the American Meteorological Society, 94(7), 1019–1029. https://doi.org/10.1175/BAMS-D-12-00097.1

Katayama, N., & Takeuchi, W. (2014). Comparison between nighttime light and socioeconomic indicators on an international scale using VIIRS day-night band. 35th Asian Conference on Remote Sensing 2014, ACRS 2014: Sensing for Reintegration of Societies, 4–6.

Kementerian Keuangan Republik Indonesia. (2021). Kajian Fiskal Regional Provinsi Jawa Timur Triwulan III Tahun 2021.

Khasanah, U., Karim, A., & Nur, I. M. (2017). Pemodelan Produk Domestik Regional Bruto (PDRB) Provinsi Jawa Tengah Dengan Pendekatan Spasial Autoregressive Model Panel Data. Prosiding Seminar Nasional & Internasional., 1988, 331–336.

Levin, N., & Zhang, Q. (2017). A global analysis of factors controlling VIIRS nighttime light levels from densely populated areas. Remote Sensing of Environment, 190, 366–382. https://doi.org/10.1016/j.rse.2017.01.006

Li, Xi, Xu, H., Chen, X., & Li, C. (2013). Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sensing, 5(6), 3057–3081. https://doi.org/10.3390/rs5063057

Li, Xuecao, Zhou, Y., Zhao, M., & Zhao, X. (2020). A harmonized global nighttime light dataset 1992-2018. Scientific Data, 7(1), 168. https://doi.org/10.1038/s41597-020-0510-y

Liang, H., Guo, Z., Wu, J., & Chen, Z. (2020). GDP spatialization in Ningbo City based on NPP/VIIRS night-time light and auxiliary data using random forest regression. Advances in Space Research, 65(1), 481–493. https://doi.org/10.1016/j.asr.2019.09.035

Liu, H. (2019). The communication and European Regional economic growth: The interactive fixed effects approach. Economic Modelling, 83(June), 299–311. https://doi.org/10.1016/j.econmod.2019.07.016

Lopez-Ruiz, H. G., Blazquez, J., & Hasanov, F. (2019). Estimating the Saudi Arabian Regional GDP Using Satellite Nighttime Light Images. SSRN Electronic Journal, January. https://doi.org/10.2139/ssrn.3382748

McCord, G. C., & Rodriguez-Heredia, M. (2022). Nightlights and Subnational Economic Activity: Estimating Departmental GDP in Paraguay. Remote Sensing, 14(5), 1–16. https://doi.org/10.3390/rs14051150

Pérez-Sindín, X. S., Chen, T. H. K., & Prishchepov, A. V. (2021). Are night-time lights a good proxy of economic activity in rural areas in middle and low-income countries? Examining the empirical evidence from Colombia. Remote Sensing Applications: Society and Environment, 24(October). https://doi.org/10.1016/j.rsase.2021.100647

Shi, K., Yu, B., Huang, Y., Hu, Y., Yin, B., Chen, Z., Chen, L., & Wu, J. (2014). Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sensing, 6(2), 1705–1724. https://doi.org/10.3390/rs6021705

Sun, J., Di, L., Sun, Z., Wang, J., & Wu, Y. (2007). Estimation of GDP Using Deep Learning with NPP-VIIRS Imagery and Land Cover Data at the County Level in CONUS. International Journal of Ecological Economics & Statistics (IJEES), 8, 5–21. https://doi.org/10.1109/JSTARS.2020.2983331

Supartoyo, Y. H., Tatuh, J., & Sendouw, R. H. E. (2014). The Economic Growth and the Regional Characteristics : The Case of Indonesia. Buletin Ekonomi Moneter Dan Perbankan, 16(1), 3–18. https://doi.org/10.21098/bemp.v16i1.435

Wahyu Widayati, C. S. (2013). Komparasi Beberapa Metode Estimasi Kesalahan Pengukuran. Jurnal Penelitian Dan Evaluasi Pendidikan, 13(2), 182–197. https://doi.org/10.21831/pep.v13i2.1409

Wang, X., Rafa, M., Moyer, J. D., Li, J., Scheer, J., & Sutton, P. (2019). Estimation and mapping of sub-national GDP in Uganda using NPP-VIIRS imagery. Remote Sensing, 11(2), 1–14. https://doi.org/10.3390/rs11020163

Wang, X., Sutton, P. C., & Qi, B. (2019). Global mapping of GDP at 1 km2 using VIIRS nighttime satellite imagery. ISPRS International Journal of Geo-Information, 8(12), 1–17. https://doi.org/10.3390/ijgi8120580

Western Cape Government. (2007). Economic Modelling and Regional Impact Analysis. Western Cape Provincial Economic Review & Outlook, 71–96.

Zargari, F., Aminpour, N., Ahmadian, M. A., Samimi, A., & Saidi, S. (2022). Impact of mobility on COVID-19 spread – A time series analysis. Transportation Research Interdisciplinary Perspectives, 13, 100567. https://doi.org/10.1016/j.trip.2022.100567

Published
2022-09-30
How to Cite
Afrianto, F. (2022). East Java Province GRDP Projection Model Using Night-Time Light Imagery. East Java Economic Journal, 6(2), 208-223. https://doi.org/10.53572/ejavec.v6i2.83
Section
Articles